
DLI ISO32 User’s Guide

1.7.24.0

CONTENTS 1

Contents

1 Overview 2

2 Product features 3

3 Package contents 4

4 Basic setup and use 5

5 LCD and keypad 10

6 Setup page 14

7 Scripting 22

8 Event notification 40

9 Customization page 48

10 External APIs 49

11 Backing up settings 57

12 Firmware upgrade 58

13 Date/time 60

14 AutoPing 61

15 Energy monitor 65

16 System log 72

17 Locking down the controller 73

18 Resetting settings to defaults 75

19 Specifications 76

20 Open source code 77

21 Technical support 78

22 Limited five year warranty 79

DLI ISO32 User’s Guide: 1.7.24.0

2 CONTENTS

1 Overview

Congratulations on selecting the DLI Web Power Switch, a surge-suppressed, AC power switch with automatic
reboot and programmable power control.

Check out the main product features. Some more technical specifications are available as well.

Be sure to check the package contents when unpacking the unit, then follow the instructions for basic setup and
use if you are a first-time user. The device is controllable using LCD and keypad, which have several modes. This
should allow you to access the basic device features. More advanced settings are located on the Setup page.

DLI ISO32 can be:

• extended with user scripts;

• customized to add branding;

• accessed via a growing number of external APIs;

• upgraded to newer firmware versions.

It can be configured to:

• ping other devices and take action if they don't respond;

• shut down outlets to prevent equipment damage;

• send notifications when certain events occur;

DLI ISO32 utility functions include:

• monitoring and logging data from miscellaneous sensors;

• reading the system log

• setting date/time;

• backing up settings;

• locking down security-sensitive functionality;

• resetting settings to defaults.

The firmware is based on open-source code which is provided to give you the option to build totally custom firmware.

Please contact technical support in case of any problems.

We offer a limited five-year warranty on these units.

DLI ISO32 User’s Guide: 1.7.24.0

2 Product features 3

2 Product features

Congratulations on selecting the DLI Web Power Switch, a surge-suppressed, AC power switch with automatic
reboot and programmable power control. Its features include:

• 8 Switched Outlets + 2 Unswitched Outlets

Eight individual switch control circuits are provided with single outlets. Outlets are spaced for plugs and
adapters. Unswitched outlets are provided for "always on" devices.

• Simple Web Interface

The internal web server is accessible from any browser. Simply enter an IP. Configuration and control are
web-based.

• AutoPing™ Reboot

AutoPing continuously monitors an IP address. If a server, router, or other peripheral goes down, AutoPing
can automatically reboot it without user intervention. Several devices can be monitored simultaneously.

• Programmable LCD Display

A 2x16 LCD displays status for each outlet.

Custom messages can be displayed via user scripts.

• Multi-User Password Security

Multi-user authentication limits access to the power controller. The administrator selects which outlets each
user can control.

• Sequenced "On Timer"

A programmable delay timer allows outlets to be switched on in sequence, rather than simultaneously. Most
devices draw a surge of power when initially switched on. Using this timer, more equipment can share a single
circuit without overloads. Programmable scripts can be used to create customized power-up and shut-down
sequences with variable timing.

• MOV Surge Suppression

Dual 3600W metal oxide varistors clamp power surges and spikes, protecting attached devices.

• Scripting Language, Syslog, and Utilities

Lua scripting can be used to create custom control and reboot sequences, schedule periodic reboots, etc.
Internal and external event logs are provided.

• New Features

New features include HTTPS, WiFi support and Lua scripting.

• Field Upgradeable Firmware

Firmware is field upgradeable via Ethernet or WiFi.

DLI ISO32 User’s Guide: 1.7.24.0

4 CONTENTS

3 Package contents

• Web Power Switch Pro.

• Power Cord.

• RP-SMA WiFi Antenna.

Please contact the freight carrier immediately if your package appears opened or damaged in transit. Call DLI at
(408) 330-5599 for tech support, service, and hardware upgrades.

DLI ISO32 User’s Guide: 1.7.24.0

4 Basic setup and use 5

4 Basic setup and use

4.1 Factory defaults

The factory default network configuration is as follows:

• wired network: fixed IP address 192.168.0.100, netmask 255.255.255.0;

• wireless network: fixed IP address 192.168.254.1, netmask 255.255.255.0.

You can log in with username admin (lower case) and password 1234. It is recommended that you change the
password. You will be reminded to do so by a big red banner on the top of each page.

To reset to factory defaults, gently press the reset-to-defaults button below the LCD to enter the reset menu, then
select a reset option.

4.2 Initial setup

Use these shortcuts if you are an experienced installer. We recommend reading the entire manual for first-time
installation.

• Unpack. Save the carton.

• Attach the power cord.

• Attach an Ethernet cable from the controller to your LAN. Switch power on. If you are attached through a
switch, you may need to cycle switch power to establish a connection.

• Ping the default address 192.168.0.100 to confirm that a network connection is established. If you don't
receive a response, proceed to the IP setup section below.

• Log in to the power controller using the default user name admin and the password 1234. Note: "admin" must
be entered in lower case.

• Click the Settings link to reach the configuration page. Select the safest power-loss configuration for your
installation: all OFF, all sequential ON or pre-powerloss state.

• Configure the power switch as described below. After each change, click Submit and wait for the page to
refresh before continuing.

Tip: A three-bulb electrical safety-tester is handy for configuring the controller before attaching your equipment.

4.3 IP setup

If your network settings won't access the default IP, use a direct cable connection (temporarily bypass any switch or
router) and follow these steps to add a compatible static IP, such as 192.168.0.50.

4.3.1 Windows IP setup

Before adding an IP, close all programs and browsers. After the link is established, you can enable DHCP.

DLI ISO32 User’s Guide: 1.7.24.0

6 CONTENTS

4.3.1.1 Locating IP settings

In Windows, the first step is locating the network adapter TCP/IP properties. The procedure differs for each Windows
version:

Windows XP, 2000, 2003:

• Open Start / Control Panel / Network Connections.

• In "classic view", select Start / Settings / Control Panel /Network Connections.

• Right-click on Local Area Network Connection and select Properties.

• Proceed to step 2.

Windows Vista:

• Open Start, right click on Network, then on Properties.

• Double click Network and Sharing Center.

• Click Manage Network Connections. A Network Connections window appears.

• Right click on the network connection to the switch, i.e. Local Area Network.

• Proceed to step 2. Windows 7:

• Open the Start orb, click on Control Panel.

• Click View Network Status and Tasks, then Change Adapter Settings.

• Proceed to step 2

Windows 8:

• Mouse or swipe to the bottom right corner and select Settings.

• Select Control Panel.

• Select Network and Sharing Center.

• Change Adapter Settings.

• Right click on your connected network and select Properties.

• Proceed to step 2

4.3.1.2 Configuring static IP

The second step is adding an IP such as 192.168.0.50. Temporarily disable DHCP while configuring the switch.

• Select Internet Protocol TCP/IP V4 Properties and click Properties.

• Enter a compatible static IP such as 192.168.0.50.

• Click Apply and close windows.

• Ping the power switch to confirm the connection.

• Point your browser to 192.168.0.100

• Log in.

Detailed instructions are at http://digital-loggers.com/ip_setup.html

DLI ISO32 User’s Guide: 1.7.24.0

http://digital-loggers.com/ip_setup.html

4 Basic setup and use 7

4.3.2 Mac OS X IP setup

• Turn AirPort off temporarily.

• Click the Apple logo, then System Preferences, then Network.

• Select Built-In Ethernet and then Configure.

• Under the TCP/IP tab, select Manually

• Enter an IP address such as 192.168.0.1 as shown:

• Make changes shown.

• Point a browser to 192.168.0.100 Log in.

Find Mac setup details at http://digital-loggers.com/mac_ip_setup.html

4.4 Windows IP configuration (2000, 2003, XP, Vista)

If your default Windows settings won't access the controller, use a crossover cable and follow these steps to reach
the controller's IP:

1. Close network programs and browsers

2. Go to Network Settings -> Local Area Network.

3. Use the keyboard shortcut — type "ncpa.cpl" and click OK.

4. Right click on your LAN connection and choose "Properties".

5. Highlight "Internet Protocol" and click the "Properties" button.

6. Click the "Advanced" button.

7. Under the IP Address settings, click the "Add" button.

8. Enter a new IP, such as 192.168.0.10, and a subnet mask of 255.255.255.0.

9. Press the "Add" button; this new IP is added the list.

10. Close all windows for the configuration to take effect.

11. Start your Browser and type 192.168.0.100 in the URL field.

The default user name and password are "admin" (lower case) and "1234".

DLI ISO32 User’s Guide: 1.7.24.0

http://digital-loggers.com/mac_ip_setup.html

8 CONTENTS

4.5 Basic switch operation

After power-up, the controller performs a sequence of self-tests to ensure reliability. The controller may then be
operated via a web browser. To access the controller, simply enter the IP address in the URL field of your web
browser, then log in. You will be presented with a screen similar to this:

Session	expires	in	00:29:48
Isolated
Power
Switch

Outlet	Control
Setup
Scripting
Event	Notification
Customization
External	APIs
Backup/Restore
Firmware	Upload
Date/Time
AutoPing
Energy	Monitor
System	Log
Logout
Support
Help

Manual
FAQ
Product	Information
Digital	Loggers,	Inc.
Source	code
Version	1.7.14.0	/	1.7.14.0
S/N:ISO322203123456

Controller:	DLI	Controller
Wed	Feb	24	05:18:39	2016

Individual	Control
Name State Action
1 Outlet	1 OFF Switch	ON
2 Outlet	2 OFF Switch	ON
3 Outlet	3 OFF Switch	ON
4 Outlet	4 OFF Switch	ON
5 Outlet	5 OFF Switch	ON
6 Outlet	6 OFF Switch	ON
7 Outlet	7 OFF Switch	ON
8 Outlet	8 OFF Switch	ON

Master	Control
All	outlets	OFF
All	outlets	ON
Cycle	all	outlets

Sequence	delay:	3	sec.

Main power controller page

Note that in this and many other pages, logical blocks can be collapsed by clicking in their right-hand corner,

and later expanded by clicking .

4.6 Common page layout

You can navigate the menu links to access the controller's features:

DLI ISO32 User’s Guide: 1.7.24.0

4 Basic setup and use 9

Isolated
Power
Switch

Outlet	Control

Setup

Scripting

Event	Notification

Customization

External	APIs

Backup/Restore

Firmware	Upload

Date/Time

AutoPing

Energy	Monitor

System	Log

Logout

Support

Help

Manual

FAQ

Product	Information

Digital	Loggers,	Inc.

Source	code

Branding

Main	menu

Custom	links

Power controller menu

Custom links can be configured on the Admin page. The branding block can be customized on the Customization
page.

4.7 Switching outlets on and off

The outlet control page lets you control outlets. The sequence in which outlets will be switched on is determined
by settings on the Admin page. To switch an outlet on or off, simply click to the right of the outlet name or number.
Switching an outlet off is immediate. Switching an outlet on may be delayed if a different (or possibly even the
same) outlet was recently turned on. The delay acts to protect the device from simultaneous inrush currents and
limit cycling rate. You may also "cycle" a device which is connected to the controller. This feature is useful for
rebooting Ethernet devices which may interrupt the web link to the controller. Clicking "Cycle" switches power off,
waits a few seconds, and then switches power back on. This resets the attached device. You may also "cycle" all
outlets using the "Cycle all outlets" button on the bottom of the page. Depending on your web browser settings,
you may need to click the "refresh" button to update the on-screen status display after changing settings. A screen
refresh setting is provided on the Setup page.

4.8 Logout

Browser logout is automatic when a session is closed or after a time-out period. You can use a menu link to log-out
in advance.

DLI ISO32 User’s Guide: 1.7.24.0

10 CONTENTS

5 LCD and keypad

The LCD has 2 lines, 16 character positions each. The displayed data depends on the mode, and possibly also on
user scripting.

The keypad has 5 keys:

• (UP),

• (DOWN),

• (ON),

• (CYCLE),

• (OFF).

During normal operation, the ISO32 LCD and keypad interface can be in one of the following modes:

• Outlet mode, which displays status of and allows to manipulate the unit's outlets;

• Meter mode, which allows to read measurements of the ISO32 meters and calibrate them;

• Network mode, which displays and allows to configure network settings.

You can cycle through the modes by pressing and keys simultaneously.

If the keypad is locked via web UI, the keypad doesn't work, and if you press a key, a message about this is displayed
and stays in place until the next update of the LCD data; no action is taken.

5.1 Outlet mode

At boot, ISO32 starts in Outlet mode.

Outlet mode

In Outlet mode, the and keys allow to choose the outlet to display. The first line shows states of all outlets.

The selected outlet is marked by a blinking cursor. Its name is displayed on the second line.

If the outlet is not locked (see below) and its physical state matches the expected state, it is displayed as:

• a plus sign for outlets that are on, or

• a minus sign for outlets that are off.

DLI ISO32 User’s Guide: 1.7.24.0

5 LCD and keypad 11

If the outlet's physical state doesn't match the expected state, (e.g. it will be switched on in sequence), its state is
marked by:

• a minus/plus sign for outlets that are physically off, but should be on, or

• a plus/minus sign for outlets that are physically on, but should be off (this should be rare).

The button switches the selected outlet on, likewise the button switches it off.

You can press and hold each of the buttons for 3 or more seconds to lock the outlet in the corresponding state.
Locked outlets can't be manipulated from web UI or with scripting, and won't be switched by using the hardware

/ keys unless you hold the corresponding key for 3 or more seconds to unlock it. Locked outlets are displayed
as:

• a zero sign for outlets that are locked off, or

• an asterisk for outlets that are locked on.

The button cycles the selected outlet unless it's locked.

Managing outlet lock state can only be done using the LCD and keypad (unless you enable SSH). Locked outlets'
states cannot be altered, and they are not affected by power loss recovery mode. However, they are still affected by
over-current, over-voltage, and low-voltage safety shutdown configuration.

5.2 Meter mode

Meter mode

In Meter mode, the and keys allow to choose the selected meter. The name of the selected meter is
displayed together with its current measured value.

Meters can be calibrated. Pressing the button starts the calibration process for the meter. The leading character

of the line, previously a whitespace , becomes an asterisk to indicate that.

Meter calibration submode

The calibration progress and method are shown on the bottom line. For example, for voltages and currents, single-
point scale calibration is used, so "1/1 SC" (first and only point, scale) is displayed.

DLI ISO32 User’s Guide: 1.7.24.0

12 CONTENTS

You can use the and buttons to adjust the value displayed to match the reading of an external measurement

device (in his case, most likely a digital multimeter). Pressing will revert the value displayed to the original
measurement.

If this is the last point to calibrate, pressing will confirm and store the calibration values and leave calibration
mode; the display will be updated in ∼2 seconds and you will see a corrected reading. If there are more points to
calibrate, pressing saves the current value and lets you input another calibration point.

You can cancel calibration at any time by pressing .

You can reset calibration to default by pressing when not in calibration submode. You will be asked to confirm

this by pressing , or decline by pressing .

5.3 Network mode

Network mode

In Network mode, the and keys allow to select the network parameter. The selected parameter name is
displayed together with its current value.

Network configuration submode

The following parameters are present:

Parameter Type Default/sample value

HTTP port TCP port∗ 80

HTTPS port TCP port∗ 443

SSH port TCP port 22

SSH enabled Yes/No No
Syslog server IP address 0.0.0.0 (none)

LAN protocol Static/DHCP Static

LAN IP IP address 192.168.0.1
LAN netmask Netmask 255.255.255.0
LAN gateway IP address 0.0.0.0 (none)

LAN DNS server IP address∗ 0.0.0.0 (none)

LAN MAC MAC 7C:E1:FF:..:..:..
WiFi enabled Yes/No Yes
WiFi SSID String DLI....

WiFi mode Access Point/Station Access point

WiFi encryption None/WPA/WPA2 WPA

DLI ISO32 User’s Guide: 1.7.24.0

5 LCD and keypad 13

Parameter Type Default/sample value
WiFi key Random string ...

WiFi channel Channel number or auto 11
WiFi protocol Static/DHCP Static

WiFi IP IP address 192.168.254.1
WiFi netmask Netmask 255.255.255.0
WiFi gateway IP address 0.0.0.0 (none)

WiFi DNS server IP address∗ 0.0.0.0 (none)

WiFi MAC MAC 7C:E1:FF:..:..:..

Most values can be changed. Pressing the button allows to change the parameter. The leading character of the

first line, previously a whitespace , becomes an asterisk to indicate that.

Different kinds of values are changed in different ways:

• for selectable options, like static/DHCP IP address mode, WiFi mode and encryption, the / keys cycle
through the available options;

• for netmasks, the / keys decrease or increase the number of set bits in the mask;

• for IP and MAC addresses, a virtual cursor is used to allow modification of individual address bytes; the cursor
is initially placed on the last byte, and can be advanced to the preceding byte by pressing ; the /
keys increase or decrease the current byte's value;

• for the WiFi pre-shared key, any of the , or buttons generates a new key;

• the WiFi SSID can't be changed from keypad.

Options marked with a star (∗) correspond to configuration items which can have multiple values (including none)
which can be set from the web UI. You can only can only set a single value from the keypad for these, and ...
is displayed on the LCD if the option doesn't have a single value. For IP addresses, 0.0.0.0 means 'none' (e.g. no
default gateway, no syslog server, etc.).

Pressing saves the current value and starts network reconfiguration if needed. The display isn't updated in-

stantly, and you need to refresh it by pressing / . You can cancel editing at any time by pressing
.

DLI ISO32 User’s Guide: 1.7.24.0

14 CONTENTS

6 Setup page

The setup page allows the administrator to configure the power controller. These settings are supported:

6.1 Controller and outlet names

Unit	Names Confirm

Controller	name DLI	Controller

Outlet	1	name Outlet	1

Outlet	2	name Outlet	2

Outlet	3	name Outlet	3

Outlet	4	name Outlet	4

Outlet	5	name Outlet	5

Outlet	6	name Outlet	6

Outlet	7	name Outlet	7

Outlet	8	name Outlet	8

Submit

Controller and outlet names

Use the controller name fields to assign a Controller Name to the power controller itself. Examples are "Server
Rack Power Strip" or "Plutonium Refinery Control". The Controller Name field appears on the top of the home page.
Assign a separate name to each outlet, such as "Missile Launcher" or "Email Server" to make identification of each
circuit simple.

You can use characters from the full Unicode character set; they'll be transliterated for display on the LCD if neces-
sary.

6.2 Delays

Delay

Wrong	password	lockout 60 	minutes.	(0-60)

ON	sequence	delay 3 	seconds.	(1-255)

Cycle	delay 0 	seconds.	(1-255)

Brown-out	re-latch	delay 10 	seconds.	(1-255)

Refresh	screen	every 1 	minutes.	(1-255)

Enable	screen	refresh

Submit

Delays

DLI ISO32 User’s Guide: 1.7.24.0

6 Setup page 15

When a time value is entered in the "All ON sequence delay" field, the power controller will pause for a period of time
before switching each outlet on in sequence. This delay helps prevent the power surges and blown circuit breakers
which can occur when multiple devices are switched on simultaneously. A delay of 60 seconds is suggested for
server applications. You may also enter a screen refresh delay in this section. If "Enable screen refresh" is checked,
and a delay value is entered, your browser should periodically update the status screen.

6.3 Power loss recovery modes

Power	Loss	Recovery	Mode

When	recovering	after
power	loss

Turn	all	Outlets	off
Turn	all	Outlets	on
Return	to	pre-powerloss	state

Submit

Power loss recovery modes

The power loss recovery mode setting has three settings which take effect after a power failure:

1. You can turn all outlets off (all systems will be switched off until manually turned on later) by checking the first
box.

2. You can automatically turn all outlets on using the "All ON sequence delay" described above. Check the
second option to do this.

3. You can return to the same outlet settings that were used prior to the power loss. The "All ON sequence
delay" will also be used in this instance. Click the third option to return to pre-powerless state.

6.4 User-defined links

User	Defined	Links

URL Description

1 http://www.digital-loggers.com/ Digital	Loggers,	Inc.

2 /src.tar.gz Source	code

Submit

User-defined links

You may link to other power controllers, your own web pages, or remote web sites by entering up to four URLs and
descriptions in the Setup page. For example, enter "Site Two Power Controller" in the description field with a URL
of "http://192.168.0.250/". These links appear on every page of the main web UI.

DLI ISO32 User’s Guide: 1.7.24.0

16 CONTENTS

6.5 Network settings

General	Network	Settings

Hostname power

Location Rack	#3

Contact Joe	Random	<joe@random.example>

HTTP	Port 80

HTTPS	Port 443

Enable	SSH	Server

SSH	Port 22

Syslog	Server 192.168.0.2

Syslog	severity
threshold

Same	subnet	access
only

FROM	192.168.0.0-192.168.0.255	(wired),	192.168.254.0-

192.168.254.255	(wireless)	ONLY

Allowed	SSH	public
keys

Submit

Debug

General network settings

You can adjust the HTTP and HTTPS port bindings. If left empty, the corresponding service is not accessible. It
may be a good idea to disable HTTP if HTTPS satisfies your needs. Disabling both for security is possible; you can
use the LCD and keypad, or SSH to re-enable them if needed.

Enabling SSH will allow full control over the device, possibly bypassing most of the restrictions, e.g. setting protec-
tion. The SSH port is customizable as well. The SSH server also accepts public key authentication for a configurable
set of keys (the format is the same as in the authorized_keys file).

You can limit the severity of the locally recorded log messages by setting a minimal severity. Note that the local
log is circular, with old messages being replaced by newer ones; messages aren't persisted across reboots. For
persistent storage, you can configure the unit to send the system log to a syslog server. All messages, regardless
of severity, are sent; the receiver is expected to do the filtering.

Same subnet restriction can used to prevent remote access from outside. ONLY MACHINES IN THE SAME SUB←↩

NET WILL CONNECT AFTER ENABLING THIS. If connectivity is lost, use a local connection such as a laptop with
a crossover cable to restore your original network settings; you can also use the LCD and keypad for that.

DLI ISO32 User’s Guide: 1.7.24.0

6 Setup page 17

6.5.1 Wired network settings

LAN	Configuration

MAC	Address 7C:E1:FF:00:00:00

Protocol

IP	address 192.168.0.100

Subnet	mask 255.255.255.0

Gateway 192.168.0.1

DNS	servers,	comma-
separated

192.168.0.1

Submit

Dynamic	IP/DHCP

Wired network settings

The device MAC address is provided for reference only and cannot be changed in this form. If you need to change
the MAC address, you may do so via LCD+keypad, SSH or using the REST-like API. Be sure you know what you're
doing, as e.g. assigning a conflicting MAC address, or a broadcast MAC address will make an interface unusable.

To configure the unit to use static IP assignment, a fixed IP address and network mask must be entered. If a
default gateway is specified it must be on the same subnet as the IP address specified. A number of DNS server IP
addresses can be supplied separated by commas, e.g. 192.168.0.1,8.8.8.8. If DNS servers are available,
some other configuration variables can accept hostnames instead of IP addresses.

If you wish to configure the unit to use DHCP IP assignment, you needn't change the IP, network mask, default gate-
way and DNS servers; rather, after the unit obtains a DHCP lease, the parameters will be displayed for reference.

It is recommended to configure the DHCP server to provide a static lease for the ISO32 using its MAC address (also
displayed).

When changing IP addresses, you may need to restart the unit and your network switch to validate the new IP on
an "auto-configuring" switch port.

DLI ISO32 User’s Guide: 1.7.24.0

18 CONTENTS

6.5.2 Wireless network settings

WiFi	Configuration

WiFi	module	enabled

MAC	Address 7C:E1:FF:00:00:00

Protocol

Channel

Mode

SSID DLI_ISO3256

Encryption

Encryption	Key ••••••••

IP	address 192.168.254.1

Subnet	mask 255.255.255.0

Gateway

DNS	servers,	comma-
separated

Submit

Static	IP

11	(2462	MHz)

Access	Point

WPA	PSK

Wireless network settings

The wireless network adapter has settings similar to those of the wired network adapter (see above), and adds
WiFi-specific ones.

It's possible to disable the wireless module entirely by unchecking the "WiFi module enabled" checkbox. The
wireless MAC address is configured to match the wired MAC address as the adapters will never be on the same
subnet in a regular setup. Use LCD+keypad, SSH access or the REST-like API if you need to change that.

The WiFi module can operate either in Access Point ("server") or Station ("client") mode. Either way, the name of
the wireless network to create/connect to must be specified as the SSID.

If the unit is configured to be an Access Point and have a static IP assignment, it starts a DHCP server on the
wireless interface.

It is possible to use no encryption on the WiFi channel, or one of the WPA, WPA2 or WPA/WPA2 mixed mode with
pre-shared key (the key has to be entered then). WEP encryption is considered insecure and is not supported.
Other encryption modes are not supported.

6.5.3 Network settings protection

You may press the "protect" button to lock the network settings (this will also affect the external API settings). Once
locked, the network settings cannot be changed except by pressing the physical reset button on the front of the unit.

DLI ISO32 User’s Guide: 1.7.24.0

6 Setup page 19

6.6 Access control

The administrator's username and password can (and should) be changed from the default values. Note that you
need to provide the current password for confirmation.

Administrator	credentials

Administrator	login admin

Old	administrator	password

New	administrator	password

Confirm	new	administrator	password

Submit Protect

Administrator credentials

In addition to the administrator, any number of users with individual passwords and outlet permissions may be
configured on the setup page. Only the administrator can edit user names and passwords (users can only inspect
and switch outlets).

Access	control:

User	Name Password
Controlled	Outlets

Apply
1 2 3 4 5 6 7 8

tom ••••••• Change

dick Change

harry ••••••••• Change

Change

User access control

Checkboxes to the right of each user name outlet control access privileges. Users can only see and interact with
the chosen outlets. For example, user 'harry' would see the following on login:

# Name StateOFF	/	ONCYCLE

1Outlet	4OFF Switch	ON

2Outlet	7OFF Switch	ON

3Outlet	8OFF Switch	ON

Logout Help 3	sec.
User outlet control screen

Individual outlets can be manipulated as usual. The top links allow switching all accessible outlets on, off or cycling
them.

DLI ISO32 User’s Guide: 1.7.24.0

20 CONTENTS

Notice the outlet numbering difference for non-administrative users vs the previous generations of EPCR/LPC con-
trollers. In ISO32, non-administrative users see all outlets accessible to them numbered consecutively starting from
1; previously the indices used to match those seen by the administrator. Naive outlet state manipulation links like
http://192.168.0.100/outlet?3=ON will work differently depending on the user you're logged in as;
however, certain use cases may benefit from this change. Consider using the REST-like API if you need consistent
outlet manipulation.

The next group is comprised of miscellaneous settings for access control.

Access	settings

Allow	legacy	plaintext	login
methods

Hide	user	passwords

Hide	WiFi	password

Disable	local	keypad

Show	device	name	on	login
page

Submit

Access settings

If you need to access the controller with clients supporting Basic authentication, or by browsers without JavaScript,
you may need to enable the "Allow legacy plaintext login methods" setting. Those methods transmit passwords over
the network and are thus considered insecure. This includes Basic authentication over HTTPS, which is secure
relative to Basic authentication over HTTP, but relies solely on TLS for security, which is considered risky by some
experts. DLI Ethernet Sender should not require this setting.

The "Hide user passwords" and "Hide WiFi password" settings configure whether clients should be able to read
back the relevant values; this may be a security issue if there are untrusted administrator users.

The "Disable local keypad" setting is designed for untrusted physical environments. When enabled, the LCD will
briefly indicate that the keypad is disabled on each keypress and otherwise ignore it.

Note that this still leaves the reset button available to an attacker.

The "Show device name on login page" setting can be used to control if unauthenticated users can see the device
name (it used to be controllable by a space character preceding the device name in previous controller models, but
is now an individual setting). This may be a convenience, but also a possible security issue.

6.7 Miscellaneous settings

The following setting group controls aspects of data presentation of the unit.

Miscellaneous	Settings

Display	LCD	text	in	all	CAPS

Meter	and	plot	default
image	format:

Submit

PNG

Miscellaneous settings

DLI ISO32 User’s Guide: 1.7.24.0

http://192.168.0.100/outlet?3=ON

6 Setup page 21

You can force all the text displayed on the LCD to be in CAPS, which may be more legible. However, this won't affect
the network settings, as they include the WiFi password which would be useless if capitalized.

You can specify the preferred image format for plots and meters. PNG is the default, as it's supported by most
browsers, but SVG can provide a much cleaner result on recent ones.

DLI ISO32 User’s Guide: 1.7.24.0

22 CONTENTS

7 Scripting

On its own, a power switch isn't very smart. Programmers can easily add custom functionality by using the built-in
Lua-based scripting language in power controllers.

7.1 Hardware requirements

Lua-based scripting is available in all ISO32 controllers. Beeper, backlight, LCD, voltage and current monitoring
functions are limited to products with appropriate hardware installed.

7.2 Configuration

The scripting server has the following configurable parameters:

Scripting	settings

Script	step	delay 1 	seconds.

User	message	force
display	timeout

0 	seconds.

User	message	timeout 	seconds.

Start	on	reboot	at

Trace	script

Submit

[Disabled]

User script configuration

• Script step delay — the time in seconds to wait after execution of a legacy API function (e.g. ON, OFF, see
below). Modern API functions (see below) don't have internal delays unless documented; the delay()
function should be used there.

• User message timeout — the time in seconds after which user messages (displayed e.g. with the DISPLAY
command) disappear even if no keys are pressed on the LCD and no changes have been made to the outlet
state (leave empty to have the messages displayed indefinitely).

• User message force display timeout — the time in seconds during which user messages are displayed even
despite keys being pressed on the LCD or changes to the outlet state (leave empty to have the messages
forcefully displayed indefinitely).

• Start on reboot at — the scripting function to start at cold boot.

• Trace script — enable diagnostic output about script progress to system log.

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 23

7.3 Entering scripts

First, for a quick overview of the script language visit the sample scripts page on the Digital Loggers web
site. Log in as admin and use the Scripting link to access the programming page.

Scripting is based on the Lua programming language. A brief introduction is done below, but you may want to
consult the general description, especially if you intend to write more complex scripts.

Script code is organized in functions. Configuration items which allow some scripting reaction to an event (reboot,
autoping failure, etc.) will ask you for the name of the function to call (you will be offered a list of the functions
defined in the script).

Script	listing

Save

--[[Power	controller	user	script	code.

The	scripting	implementation	has	changed,	and	is	no	longer	compatible
with	the	older	BASIC	implementation.	The	most	important	changes	are:

-	Now	Lua-based.
-	No	more	line	numbers,	blocks	of	code	identified	by	functions.
-	Most	of	ON,	OFF,	etc.	are	kept	as	legacy	functions,	which	can	be	called	like
e.g		ON(2345),	ON("2345")	or	ON	"2345",	your	choice.

Execution	is	still	based	on	threads.	Now	threads	are	more	visible	and
manageable.	Try	starting	some	and	you'll	see	them	appearing	in	the
list.

Scripting	samples	are	now	available	as	snippets	(below),	separate	from
the	main	script	code.	You	can	copy/paste	them	from/to	the	main	script.

Stock	snippets	have	names	starting	with	'default.';	changing	or
creating	snippets	with	such	names	is	not	recommended	as	your	changes
may	be	erased	on	an	upgrade.

]]--

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

User script source editor

You will need to define your functions to be able to use scripting. Simply putting calls to existing functions in the
script will not work. Functions are defined like this:

function my_function()
... statements go here ...

end

All functions defined this way will be usable from the web UI and callable externally. If you want to define a function
for internal use, not to be called from outside, prefix it with local:

local function my_internal_function()
... statements go here ...

end

Local functions declared this way must be placed before any function that uses it. If you want to move the definition
elsewhere and don't need to call the function before the definition, you can use the following structure:

local my_internal_function

... functions that use my_internal_function in bodies ...

function my_internal_function()
... statements go here ...

end

DLI ISO32 User’s Guide: 1.7.24.0

http://www.digital-loggers.com/scripting_lua.html
http://www.wikipedia.org/wiki/Lua_%28programming_language%29

24 CONTENTS

This works as long as all calls to my_internal_function occur in other functions not immediately executed.
my_internal_function is still local (not visible externally). This works because a function is just another type
of value, and function fn()...end is just like fn=function()... end, so it works the same way as

local x
...
x=5

Here, x has the value nil until it's assigned the value 5. Similarly, local function x()... end is just
like local x; x=function()... end.

Functions in Lua are called with their arguments parenthesized, e.g. func(arg1,arg2). Functions with no
arguments are called with empty parentheses, like func(). However, according to Lua syntax, a single string
function argument doesn't need parentheses, thus allowing the BASIC-like commands to avoid them if there's only
one argument.

You can also create functions with arbitrary names (including Unicode) like this:

_G["Turn on lamp"]=function()
... statements go here ...

end

All the above declarations are essentially assignments to (global and local) variables. Therefore, if multiple scripts
functions have the same name, the one closest to the bottom will effectively mask preceding ones.

When you're prompted for a script function to choose, choices will appear in the order they're specified in the script
source. If you wish to change that, you can define a global ui_order table with a list of quoted function names to
appear at the top of the list, in the desired order (others will be at the bottom of the list in alphabetical order). E.g.

ui_order={"important_function","frequently_useful_function"}

Most APIs listed below are only available when used inside functions, not in the global context. That is, attempts to
write e.g.

ON(1)

without an enclosing function will fail (such actions cannot be taken at script load time).

7.4 Snippets

Snippets are script fragments not part of the main script, stored for later use or shipped with the device.

Script	snippets

	 Load 	 Save 	 Removedefault.lua_table_demo

function	test_table_manipulations()
				local	a={"1","2","3"}
				assert(a[3]=="3")
				assert(a[4]==nil)
				table.insert(a,"x")
				assert(a[4]=="x")
				table.insert(a,1,"y")
				assert(a[1]=="y")
				assert(a[2]=="1")
				assert(a[5]=="x")
				table.remove(a,2)
				assert(a[1]=="y")
				assert(a[2]=="2")
				assert(a[4]=="x")
				assert(a[5]==nil)
				table.sort(a,function(u,v)	return	u>v	end)
				assert(table.concat(a)=="yx32")
				LOG("Table	tests	passed")
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

User script snippet editor

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 25

The snippet name selector can be used to choose an existing snippet, or to enter a new name, e.g. to create a
new snippet or save the current snippet under a different name. Use the "Load" button to load the snippet with the
selected name in the snippet editor. Use the "Save" button to save the currently edited snippet under the selected
name. The "Remove" button can be used to erase the selected snippet.

Snippet code can be copied/pasted from/to the main script code. It is not subject to syntax or other checks so it's
OK to place incomplete code fragments there.

Snippet names starting with 'default.' are reserved for snippets shipped with the device. It is not recommended to
change or create snippets with such names because your changes may be erased on an upgrade.

7.5 Threading

Multiple threads of execution can be running at the same time. Any number of threads may run concurrently.

Thread	control

No	threads	currently	running.

Start
thread:

	 Startdo_some_lua_stuff

User script thread list

Threads can be started from the web UI, via an HTTP request, by an AutoPing trigger, or from other threads using
thread.run. They can be explicitly stopped using the web UI or by calling thread.kill or thread.←↩

killall from the script, or implicitly by calling thread.limit.

Every thread has an 'origin', which is usually a string identifying the function that started the thread. For instance,
when you create a function like this:

function my_function()
... statements go here ...

end

and then start it with the web UI, its origin is the "my_function" string. Threads created by other threads inherit
their parent's origin, which can be useful when stopping a group of threads.

7.6 API levels

The scripting engine presents two sets of functions that you can use to write scripts:

• Legacy functions — functions which are designed to resemble the BASIC commands of the previous gener-
ations of EPCR/LPC controllers;

• Modern API — functions and objects which are designed to be easier to use.

You can use and even freely mix them as you wish, but only the modern API will receive further development atten-
tion. Some features are exposed only via the modern API because they had no corresponding legacy commands.

DLI ISO32 User’s Guide: 1.7.24.0

26 CONTENTS

7.6.1 Legacy functions

Legacy functions (written in CAPS) are executed in sequence with a "step delay" after them. The legacy functions
are designed so as to resemble the BASIC commands of the previous generations of EPCR/LPC controllers while
remaining compatible with the Lua language.

Arguments to the legacy functions can be written as e.g. ON(12345678), ON "12345678" or
ON("12345678").

The supported legacy functions are:

• ON, OFF, CYCLE, RESTORE — perform the action on a list of outlets by numbers (as a number or a string);

• BEEP(ON) or BEEP(on) or BEEP(true) — turn beeper on;

• BEEP(OFF) or BEEP(off) or BEEP(false) or BEEP(0) — turn beeper off;

• BEEP(number>0) — turn beeper on for the specified number of seconds, then off;

• SLEEP(number[,"unit"]) — suspend execution for the given amount of time (units default to "sec-
onds", but can be "seconds", "minutes", "hours" or "days"; abbreviations like "sec", "h", "d" are also accepted);

• WAIT "cron time mask" or WAIT(minute_mask,hour_mask,day_mask,month_←↩

mask,weekday_mask) — wait for the local time to match the condition (each separate mask element
must be a number or "∗", and a "cron time mask" must be a string of 5 such elements separated by
whitespace);

• LOG "String" — write a message to the system log

• DISPLAY "String" — display a string on the LCD when it's in outlet mode. The following strings are
expanded:

– %% — literal "%";

– %o — state of outlets, in the form "12456" (ON outlets are listed);

– %O — state of outlets, in the form "++-+++--";

– %n — serial number;

– %f — firmware version;

– %d — system time/date;

– %M — MAC address of the power controller;

– %i — IP address of the power controller;

– %m — IP network mask;

– %g — IP gateway;

– \1 — move cursor to the beginning of line 1;

– \2 — move cursor to the beginning of line 2;

– \f — clear screen;

– \v — clear end of current line;

• WOL "MAC address" — attempt to wake device with specified MAC address up using Wake-on-LAN
protocol (the device has to be in the same LAN segment);

• TIME "server" — synchronize time with server specified by IP address or hostname in quotes; you can
use TIME() without arguments to synchronize with "pool.ntp.org" if the DNS is configured correctly.

You still need to enclose the function contents in a function name() ... end as explained above.

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 27

7.6.2 Modern API

Modern API allows more object-oriented approach to scripting. You need to explicitly use the delay() function if
you use the modern API and need a delay. Note that the outlet power-on sequence delay applies anyway.

Lua objects can have fields (data contained in the object) and methods (functions which affect the object's state).
Object fields are accessed with a dot ., like meter.reading. However, different object implementations in Lua
may use the colon : or the dot . to access the object's methods (outlet:cycle() or outlet.cycle()).
In the modern API, all objects use the dot . to access their methods, to prevent confusion.

Modern API objects and functions are grouped into several categories for convenience.

7.6.2.1 Core Lua functions

To make scripting safer, only a limited subset of Lua features is supported by sandboxing. The following Lua
standard library features are supported:

Globals: _VERSION, assert, error, next, ipairs, pairs, pcall, xpcall, select, tonumber,
tostring, type, unpack.

string library: string.byte, string.char, string.find, string.format, string.gmatch,
string.gsub, string.len, string.lower, string.match, string.rep, string.reverse,
string.sub, string.upper.

table library: table.insert, table.concat, table.maxn, table.remove, table.sort.

math library: math.abs, math.acos, math.asin, math.atan, math.atan2, math.ceil, math.←↩

cos, math.cosh, math.deg, math.exp, math.floor, math.fmod, math.frexp, math.huge,
math.ldexp, math.log, math.log10, math.max, math.min, math.modf, math.pi, math.pow,
math.rad, math.random, math.sin, math.sinh, math.sqrt, math.tan, math.tanh.

os library: os.clock, os.difftime, os.date, os.time.

Additionally, _G points to the sandbox environment.

Unlike most APIs, core Lua functions are available in the global context.

7.6.2.2 Delay functions

The delay function accepts the number of seconds to wait as an argument (it is assumed to be the script step
delay if not specified). Only a single script thread is active at any given time; switching to a different thread is not
performed until you call delay() (or other function possibly introducing a delay). If a scripting thread doesn't call
delay() or one of the legacy API functions every now and then, it can't be terminated by thread.kill and
will eventually be shut down by the runtime.

The wait_until function can be used to wait for an arbitrary number of conditions on local time. It may have
any number of arguments, each named a condition. It waits for one of the conditions to be satisfied, and returns its
1-based index. If several conditions would be satisfied simultaneously, the first match wins.

A condition is a table which may (but does not have to) contain any set of the following keys:

• year, which stands for the year;

• month, which stands for month (1 is January);

• day, which stands for day of month;

DLI ISO32 User’s Guide: 1.7.24.0

28 CONTENTS

• wday, which stands for day of the week (1 is Sunday, 2 is Monday, 7 is Saturday);

• yday, which stands for day of the year (1 is January, 1st);

• hour, which stands for hours;

• min, which stands for minutes;

• sec, which stands for seconds;

• isdst, which stands for the daylight savings time flag (true or false).

The values corresponding to the keys are the actual restrictions, all of which must be met in order for the condition
to be satisfied. A simple value (i.e. a number for anything but the DST flag, and true/false for the DST flag) matches
only itself. A function (receiving the field's value as argument) matches anything for which it returns true.

Here are some examples of conditions that can be used:

{hour=0,min=0,sec=0} -- matches at midnight;
{hour=7} -- matches anywhere between 7:00:00 and 7:59:59;
{wday=function(d) return d==1 or d==7 end} -- matches weekends.

It is not advised to perform exact matches on seconds since delays of internal operations may be greater than 1
second. It is advised to introduce additional delays to avoid triggering the same match again. The following sample
switches outlet 1 on at 8:00 and off at 17:00.

while true do
local event=wait_until({hour=8,min=0},{hour=17,min=0})
if event==1 then

ON(1)
else -- event==2

OFF(1)
end
delay (120)

end

We match with minute precision here and wait for 2 minutes to avoid double matching.

7.6.2.3 Outlet management

The global variable outlet represents a Lua array of outlet objects.

• outlet[N].on(): switches the outlet on (affects transient state);

• outlet[N].off(): switches the outlet off (affects transient state);

• outlet[N].cycle(): cycles the outlet (affects transient state);

• outlet[N].persistent_state: boolean representing the persistent requested state of the outlet
(writes will affect transient state as well);

• outlet[N].transient_state: boolean representing the transient requested state of the outlet;

• outlet[N].physical_state: read-only boolean representing the physical state of the outlet;

• outlet[N].state: boolean reflecting outlet physical state when read, modifying transient state when
written;

• outlet[N].locked: read-only boolean indicating if the outlet is locked.

Global constants on and off are true and false, respectively, useful to make scripts more readable, like
outlet[1].state=on;

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 29

7.6.2.4 Thread management

Several threads can be executed simultaneously in a pseudo-parallel fashion. The global thread table contains
these methods:

• thread.run can be used to start new threads; it accepts the thread function as argument, and returns
the identifier of the resulting thread; it can accept a second string parameter to act as a description of the
thread running and a third string parameter to redefine the thread origin, which may be useful for thread.←↩

killall and thread.limit;

• thread.kill can be used to stop a thread; it accepts the identifier of the thread as an argument;

• thread.killall can be used to stop many threads; it accepts the origin of the threads to kill as an
argument (without an argument, all threads are killed, including the calling one);

• thread.limit allows to ensure that no more than the specified number of threads with the same origin
are present; its first argument is the maximum number of threads, and the second one is one of the strings
"this", "earliest" or "latest", indicating which thread(s) should be killed if their count is above
the limit (it's possible to specify an array of values, like {"this","latest"}, instead).

7.6.2.5 User interface

The global ui table provides means of configuring the LCD display, backlight and beeper.

Functions ui.beep and ui.blink configure the beeper and LCD backlight, respectively. Their first argument
should be a string of "1"s and "0"s, which specifies the pattern, and their second argument should be the number
of seconds after which the preceding behaviour is restored.

The ui.line table has two elements ui.line[1] and ui.line[2], specifying the custom displayed strings
for the LCD rows (or nil for regular operation of said row). This offers more fine-grained control than the DISPLAY
command above.

As follows from the above, the number of LCD rows is # ui.line. Use ui.column_count to retrieve the
number of LCD columns (usually 16).

7.6.2.6 Configuration access

The global variable config represents a partial read-only view on the unit configuration (most of them strings):

• config.serial: unit serial number;

• config.hostname: unit hostname;

• config.contact: primary unit contact;

• config.contacts: a table storing contacts related to the unit in different ways;

• config.location: physical location of the unit;

• config.timezone: system time zone;

• config.hardware_id: unit hardware model;

• config.oid: object identifier of unit model;

• config.version: firmware version;

• config.outlet_label: kind of endpoint manipulated by the unit (Outlet/Relay).

DLI ISO32 User’s Guide: 1.7.24.0

30 CONTENTS

7.6.2.7 Transient state management

Local and global variables of scripts are shared between threads created in a single script environment but are
in general separate between separately loaded script environments. In the example below, if you create several
threads using thread_creator, they will all reference the same instances of local_var and global_←↩

var:

local local_var=0
global_var=0

function thread_fn()
while true do

...
local_var=local_var+1
global_var=global_var+1
...

end
end

function thread_creator()
for i=1,10 do

thread.run(thread_fn)
end

end

Even if you run thread_creator several times (e.g. from the web UI) without changing source code, all of the
threads will share both local_var and global_var.

However, if you change the code and launch thread_creator again, new instances of local_var and
global_var will be created; the 10 new threads will be completely separate from the old threads.

This makes handling global functions and variables consistent (e.g. if you don't have a global variable in the script,
you won't accidentally trip over it if it was there in a script you loaded several edit iterations earlier), but this default
behaviour may or may not be what you want.

To store arbitrary data between script edits, you can create entries in the global sticky table, like this:

sticky["variable"]="some value to save between script edits"

As usual in Lua, for identifier-like keys you can alternatively use the dot syntax:

sticky.variable="some value to save between script edits"

The above example then becomes:

function init_sticky()
sticky.local_var=0
sticky.global_var=0

end

function thread_fn()
while true do

...
sticky.local_var=sticky.local_var+1
sticky.global_var=sticky.global_var+1
...

end
end

function thread_creator()
for i=1,10 do

thread.run(thread_fn)
end

end

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 31

If you overwrite the whole sticky table like this:

function init_sticky()
sticky={local_var=0,global_var=0}

end

the changes will only apply from that environment on (threads started in previous environments will be unaffected).

In both cases you'll need to call init_sticky once explicitly before calling thread_creator, which might be
inconvenient. Alternatives include setting default values, if they are not nil, on entry to functions that use the values:

function thread_fn()
sticky.local_var=sticky.local_var or 0
sticky.global_var=sticky.global_var or 0
while true do

...
sticky.local_var=sticky.local_var+1
sticky.global_var=sticky.global_var+1
...

end
end

or writing code that it handles default nil values transparently:

function thread_fn()
while true do

...
sticky.local_var=(sticky.local_var or 0)+1
sticky.global_var=(sticky.global_var or 0)+1
...

end
end

Variables created this way are not persisted across reboots; see below for those that are.

7.6.2.8 Externally accessible state management

Local and global variables of scripts are in general not accessible from outside the scripting engine, e.g. they cannot
be manipulated from the REST-like API.

You can create entries in the global external table, like this:

external["variable"]="some value"
external["variable2"]=12345

and have them accessible under /restapi/script/variables/variablename/.

You can only store strings, numbers, booleans or nil into this table at nonempty string indices. Attempts to use
nonstring keys, or table or function values, or overwrite the external table, will result in an error:

external={} -- error
external["x"]=outlet -- error
external[5]=external -- error

The external table otherwise behaves like sticky; in particular, variables created this way are not persisted
across reboots; see below for those that are.

DLI ISO32 User’s Guide: 1.7.24.0

32 CONTENTS

7.6.2.9 Persistent state management

User scripts can read and write state variables which persist across power cycles. This is done by modifying the
global persistent table. For example, the following log_boot_count function, if configured to be started at
cold boot, can report the current cold boot number (and the ordinal function is a convenience for printing strings
like "1st", "2nd", "3rd", etc.).

local special_suffixes,ordinal

function log_boot_count()
local boot_count=persistent.boot_count or 0
boot_count=boot_count+1
persistent.boot_count=boot_count
LOG("This is my "..ordinal(boot_count).." power cycle")

end

special_suffixes={"st","nd","rd"}

function ordinal(number)
local d=number%100
return tostring(number)..((d<11 or d>19) and special_suffixes[d%10] or "th")

end

Here, the "boot_count" key is used to store the number of boots. Like with ordinary Lua tables, nonexistent keys
have nil values; to remove a key from persistent, write nil to it.

Only strings can be used as keys of persistent. Only numbers, strings and booleans can be stored (or nil can
be written to erase a value). Some of these limitations may be raised in future.

All keys of persistent can be enumerated if necessary using pairs().

7.6.2.10 Meter access

The global meter table allows to read the following measured values :

• meter.values: a table storing properties of different values measured by meters.

Keys of meter.values are unique human-readable but possibly platform-specific identifiers (e.g. power_←↩

voltage), and values are tables with the following form:

• meter.values[key].name: human-readable name of the measured value;

• meter.values[key].quantity: kind of the physical quantity of the value (e.g. "current", "voltage",
etc.);

• meter.values[key].value: number representing the current value measured by the meter in stan-
dard units;

• meter.values[key].custom: boolean indicating if the value is custom (user-defined);

• meter.values[key].bus: always nil for ISO32;

• meter.values[key].internal: boolean indicating if the value is internal (and should not appear in
the web UI);

• meter.values[key].get_history: function which can be called to obtain historical data points.

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 33

The get_history() function must be called like this: get_history(desired_start_time,
desired_end_time, desired_step). The desired_start_time is the timestamp of the start
of the desired interval (in seconds since the epoch, 1970-01-01T00:00:00Z). Similarly, desired_end_time
is the desired end time. desired_step is the desired step between adjacent time points. Resulting data
may not match the requirements exactly, but will be generated so that it overlaps the desired time range and
has the closest time step. The function returns a table with 3 elements {actual_start, actual_step,
data} (note that it doesn't return 3 values, which is possible for Lua functions, but a single table containing
them). actual_start is the timestamp of the start of the output interval, actual_step is the step between
adjacent time points, and data is a table whose ith element is the (averaged) value of the meter around time
actual_start+(i-1)∗actual_step (mind that indices in Lua are 1-based) or false if no reading was
obtained within that time interval (e.g. if the device was offline).

Its use is best illustrated by an example. Suppose temperature is a value of the form:

local temperature=meter.values[...]

Then the following script could be used for obtaining bounds for the 5-minute-average temperature for the last 24
hours:

local now=os.time()
local history_data=temperature.get_history(now-86400,now,300)
local start,step,data=unpack(history_data)
-- or local start,step,data=history_data[1],history_data[2],history_data[3]
local mintime,mintemp,maxtime,maxtemp
for pos,temp in ipairs(data) do

if temp then
local time=start+(pos-1)*step
if mintemp==nil or mintemp>temp then

mintemp=temp
mintime=time

end
if maxtemp==nil or maxtemp<temp then

maxtemp=temp
maxtime=time

end
end

end
if mintime then

LOG(string.format("Min temperature was %gK at %s",mintemp,os.date("%H:%M:%S",mintime)))
LOG(string.format("Max temperature was %gK at %s",maxtemp,os.date("%H:%M:%S",maxtime)))

else
LOG("No temperature readings for the last 24 hours!")

end

Note that values of meter.values[key].value and meter.values[key].get_history() are in
standard SI units, e.g. degrees Kelvin for temperature.

7.6.2.11 AutoPing integration

The global autoping table allows to query and configure AutoPing.

• autoping.enabled: boolean variable which allows enabling (true) or disabling (false) AutoPing;

• autoping.items[N].enabled: read-only boolean value indicating if the Nth AutoPing item is enabled;

• autoping.items[N].enable: function to call to attempt to enable (with the argument true) or disable
(with the argument false) the Nth AutoPing;

• autoping.items[N].addresses: array of hostnames or IP addresses of the Nth AutoPing item's
elements;

• autoping.items[N].outlets: array of outlets controlled by the Nth AutoPing item;

DLI ISO32 User’s Guide: 1.7.24.0

34 CONTENTS

• autoping.items[N].script: the name of the scripting function run by the Nth AutoPing item when
it's triggered ("" to cycle the controlled outlets);

• autoping.items[N].status: the run-time status of the Nth AutoPing item;

• autoping.ping_interval: ping interval;

• autoping.ping_timeout: ping timeout;

• autoping.post_reboot_delay: post-reboot delay;

• autoping.max_reboot_count: maximum reboot count;

• autoping.pings_before_enabling: pings before enabling.

7.6.2.12 Network state access

The global network table has two similarly-structured members, network.wired and network.←↩

wireless, which represent partial read-only views on state and configuration of the respective networks (all
fields are strings unless indicated otherwise):

• network.(wired|wireless).online: boolean value indicating if the interface is online;

• network.(wired|wireless).protocol: method for obtaining the IP address (static/dhcp);

• network.(wired|wireless).ip_address: IP address;

• network.(wired|wireless).netmask: network mask;

• network.(wired|wireless).gateway: default gateway;

• network.(wired|wireless).mac_address: MAC address;

• network.wireless.enabled: boolean value indicating if the wireless interface is enabled;

• network.wireless.mode: wireless module mode;

• network.wireless.ssid: wireless network name;

• network.wireless.channel: wireless channel (channel number as string, e.g. "11", or "auto");

• network.wireless.encryption: wireless encryption (none/psk/psk-mixed/psk2).

7.6.2.13 Event APIs

The global event table allows limited integration of user scripts with the notification subsystem.

The event.send function can be used to send a dli.script.script_event event with custom message
and data. It takes the event properties script_message and script_data as arguments. script_←↩

message must be a string that will be included in the event message. script_data, if supplied, must be a table
with string keys and scalar (boolean, number or string) values, and can be analyzed by the rule conditions and/or
used by rule actions. Non-string keys or non-scalar values are ignored; if the script_data argument is not a
table, an empty table is sent. All script-generated events have a (possibly empty) table as script_data, and
only they have it, so its existence is a distinctive feature of script-generated events.

For example, the following code

event.send("coil 1 energized",{coil_index=1,coil_state=true})

will send an event that can be matched by, among others, the following notification rules:

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 35

id=="dli.script.script_event" and script_data.coil_index==1

script_data and script_data.coil_state

All script-generated events have INFO severity level.

Events can also be waited for and received, and that is not limited to system-level events discussed above. An event
can have several components with integer indices (the components themselves can be any types, e.g. tables).
Events generated by the API generally have two components, a numeric timestamp (in seconds since the epoch,
1970-01-01T00:00:00Z) and a property table, but totally custom events are possible.

It is usually essential not to miss an event when processing them, so events are placed into queues waiting to be
processed. The event.stream function is a Lua generator to be used in a for loop like this:

for queue_idx,value1,value2,value3... in event.stream(queue1,queue2,queue3...) do
...

end

event.stream accepts any number of queue arguments and waits for events to be received (causing a delay
and allowing other threads to run), then extracts and returns their components. Queues are processed in priority
order (e.g. queue1 messages get processed before queue2 messages).

The event.queue function creates a totally custom event queue not bound to any event source. Additional
custom events can be placed into any queue using q[# q+1]={value1,value2,value3...} regardless
of the method used to create the queue; for queues created by event.queue, this is also the only way for events
to appear there.

The event.listener function creates an event queue listening to the global system events (i.e. the ones
received by the notification system and generated by other systems and event.send function). Events have a
timestamp and a property table as components. The property table contains event-type-dependent properties (e.g.
the id is the event type identifier).

The following example function can be used to display all system events in internal form in the event log:

function dump_system_events()
for i,t,data in event.stream(event.listener()) do

dump({i,t,data})
end

end

The event.change_listener function takes any number of API objects object1,object2,object3...
as arguments and creates an event queue listening to changes in the API objects' states. Events have a timestamp
and a property table as components; the property table contains the following fields:

• object: the changed object;

• index: the object's number in the argument list;

• key: the property of the object that has changed;

• value: the new value of the property.

Only a subset of the API's objects support change notifications; they include outlet objects outlet[i] , meter
values meter.values[k] and AutoPing items autoping.items[i].

The following example function can be used to attempt to mirror physical state of outlet 1 to outlet 2:

DLI ISO32 User’s Guide: 1.7.24.0

36 CONTENTS

function mirror_outlet_1_to_2()
outlet[2].state=outlet[1].physical_state
for i,t,data in event.stream(event.change_listener(outlet[1])) do

if data.key=="physical_state" then
outlet[2].state=data.value

end
end

end

The event.local_time and event.utc_time functions take any number of time-matching condition tables
as arguments and creates an event queue where events appear in time moments matching the conditions. This can
be seen as an improved wait_until function which doesn't miss triggers if handling the event takes too long.
The most important difference is that new checks are "edge-triggered", not "level-triggered": an event is placed
into the queue only when the condition becomes true; no events are created when the condition stays true until it
becomes false and then true again. For example, if you start a loop waiting for {hour=7,min=10} at 7:10, the
event will not be created right away and the loop will not be executed until the next day, whereas wait_until
would return immediately. This is because a "level-triggered" approach might have to add an infinite number of
events to the queue. This also means that you usually won't have to add e.g. min=0,sec=0' or similar to the
condition to make it start only at the beginning of an hour. Additionally, wait_until only handles local time,
which corresponds to event.local_time behaviour, but you can match UTC time with event.utc_time,
which has no corresponding wait_until option. Events have a timestamp and a property table as components;
the property table contains the following fields:

• index: the condition's number in the argument list;

• time: the time matching the condition (not necessarily exactly one of the timestamp).

The following example function can be used to check outlet 1 state and report if it remains physically off for more
than an hour. Note that we do not simply poll the outlet e.g. every minute, but subscribe to state change events
instead so that we don't miss any changes. We also create the change event queue before the initial state check so
that we don't miss any state changes during initialization.

function monitor_1()
local reported
local off_since
local changes=event.change_listener(outlet[1])
if not outlet[1].physical_state then

off_since=os.time() -- We don't know that for sure but that's when we start monitoring
end
for i,t,data in event.stream(changes,event.utc_time({sec=0})) do

if i==2 then
if off_since and t-off_since>3600 then

if not reported then
log.warning("Off for too long, since %s",os.date("%c",off_since))
reported=true

end
end

elseif data.key=="physical_state" then
if data.value==true then

off_since=nil
if reported then

log.notice("On again, phew")
reported=true

end
elseif off_since==nil then

off_since=t
end

end
end

end

Of course we could have used e.g. event.send instead of log, or flipped another outlet, etc.

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 37

You should not usually poll the same queue from different threads. Every event from a queue will be processed by
a single thread only. A single event can be placed into multiple queues though.

Like any other loop, a loop over event.stream(...) can be terminated via a break statement in the body.
The catch is that the loop body isn't executed until a matching event occurs. If you need to terminate a thread's
event loop from another thread, you may e.g. create and share an event queue between them, and place an event
into it when you want to terminate the loop, like this:

local function event_thread(cancel_queue)
...
for i,t,data in event.stream(cancel_queue,...) do

if i==1 then
break

else
...
end

end
...

end

function caller_thread()
local cancel_queue=event.queue()
thread.run(function() return event_thread(cancel_queue) end)
...
cancel_queue[#cancel_queue+1]={}
...

end

There are obviously other ways to share a queue like this. The location of cancel_queue in the event.←↩

stream argument list above affects whether the loop is terminated immediately after receiving the cancellation
message or after processing outstanding events in other queues.

You can also just use thread.kill if you don't need the looping thread at all any longer.

7.6.2.14 Utility functions

The global util table provides helpful utility constants and functions which usually have no state or side effects.

util.hex, util.base64, util.url are tables with encode and decode members which perform hex,
Base64 and URL component encoding and decoding, respectively; they both accept and accept strings.

The util.json table also contains encode and decode members, which perform JSON encoding and decod-
ing, respectively. util.json.encode accepts any regular value (without cycles) and returns a string; util.←↩

json.decode accepts a string and returns a value corresponding to it.

Due to how Lua handles tables, an empty JSON array [] cannot be distinguished from an empty JSON object {}
once decoded. To help that, util.json.encode accepts an optional second argument, which is an "empty
array table", that is, a table with keys corresponding to empty Lua tables in the input which represent empty JSON
arrays. For example,

local data={a={},b={}}
log.notice("%s",util.json.encode(data,{[data.b]=true}))

produces:

{"a":{},"b":[]}

Conversely, util.json.decode returns an empty array table as a second value if it is nonempty (that is, if there
were empty arrays in the input).

DLI ISO32 User’s Guide: 1.7.24.0

38 CONTENTS

local value,is_empty_array=util.json.decode('{"a":{},"b":[]}',is_empty_array)
log.notice("a: %s%s",type(value.a),is_empty_array[value.a] and ":array" or "")
log.notice("b: %s%s",type(value.b),is_empty_array[value.b] and ":array" or "")

Thus JSON round-trips, i.e. util.json.encode(util.json.decode(JSON)) produces a JSON string
equivalent to the input JSON even in the presence of empty arrays/objects.

All transcoding functions may throw errors on invalid input; using pcall / xpcall is advised.

util.null is the JSON null constant, distinct from, but sometimes interchangeable with, nil. It may be useful
when dealing with some APIs.

The util.copy(val[,deep_keys]) function returns a deep plain copy of its argument (which can be or
contain an API structure). This may be helpful when working with util.json.encode as it doesn't by itself
support encoding API structures. An optional argument, deep_keys, can make util.copy perform deep
copying of table keys (in case they're tables themselves), otherwise table keys are left intact.

The util.equal(val1,val2) function performs a deep equality comparison of its two arguments (each of
which can be or contain an API structure) and returns true if they are equal and false otherwise. Tables are compared
structurally, i.e. they are considered equal if they have equal keys with equal values. Unlike util.copy, util.←↩

equal doesn't support comparisons with copied table keys as those are in general undecidable without additional
information (consider {[{}]=1,[{}]=2} and {[{}]=2,[{}]=1}).

The util.argpack function compresses its arguments into a table with an extra nmember indicating the number
of arguments. It could be implemented as:

util.argpack = function(...)
return {n=select("#",...),...}

end

The util.argunpack function expands a table into a value list with the number of elements taken from the
table's n member. It could be implemented as:

util.argunpack=function(tbl)
return unpack(tbl,1,tbl.n)

end

In combination, util.argpack and util.argunpack allow perfect function argument forwarding in presence
of nil arguments.

Unlike most APIs, utility functions are available in the global context.

7.6.2.15 Debugging

• dump — useful debugging function which outputs the argument to the system log, can be used to inspect
state and even study the modern API itself (try dump(_G)!). Note that this function may delay execution
while dumping sufficiently large objects. Other threads may run while execution of the dumping thread is
suspended. If they modify the object being dumped, the resulting dump output may be inconsistent.

• log— contains methods debug, info, notice, etc. which accept a format string argument and any extra
arguments it requires, format the string using string.format internally and log it at the corresponding
severity level, e.g.

local i=5 local name="Fridge" log.notice("Switching on %d (%s)",i,name)

DLI ISO32 User’s Guide: 1.7.24.0

7 Scripting 39

7.7 Starting scripts

There are a few ways to start scripts:

• On power up. This feature automatically starts a specified script function when power is first applied. The
default is not to start any function, so pressing the "reset to defaults" button will disable this feature.

• By another thread. One thread can create another by using the thread.run function. For example,
thread.run(func1) creates a new thread that starts executing the func1 function. The execution of
the parent thread continues.

• By issuing an HTTP request. Follow a link http://Your_IP/script.cgi?run=func to start exe-
cution from function func. This can be conveniently used by the end users by assigning the programmable
web links on the left side of the page a target of the form script.cgi?run=func.

• Via AutoPing. The AutoPing system can be configured to automatically start execution when IP connectivity
is lost. Select the script to run from the selection box to the right of the corresponding IP on the AutoPing
page.

• By manually clicking the Start button. Execution will start with the selected function.

7.8 Editing scripts

You don't need to disable scripting before editing scripts. If you make a syntactic error, the script won't be modified.
Instead, you'll receive an explanatory message pointing to the error.

If you modify a running script, existing threads will continue to run with the code and environment that existed when
the script was started. New threads won't interact with old ones directly. Use transient and persistent state APIs for
that.

7.9 Stopping a thread

A thread terminates automatically when the end of its outermost function is reached. Click "Stop all running threads"
to stop everything. You can also stop all scripts via HTTP using http://Your_IP/script.cgi?stop.

7.10 Relay debounce warning

Even with the scripting step delays, it is possible to create a script which will rapidly cycle a relay. This rapid cycling
could result in a over current condition, tripped breaker, or stress to the power controller or attached equipment.
Please be reasonable!

DLI ISO32 User’s Guide: 1.7.24.0

http://Your_IP/script.cgi?run=func
http://Your_IP/script.cgi?stop

40 CONTENTS

8 Event notification

Certain power controller events can trigger configurable notifications over a variety of media:

• email;

• XMPP (Jabber, Google Talk, etc.);

• SNMPv1, SNMPv2c and SNMPv3 TRAPs;

• SNMPv2c and SNMPv3 INFORMs;

• webhook.

Notification is based on the Lua programming language.

8.1 Notification context

When an event happens, a notification thread is started, with event's properties being copied to global variables
(and thus constituting the context of further notification code snippets).

The most important of the rule action context (see below) is the notify function, which sends the current notifica-
tion context to matching targets.

All kinds of events share the following properties:

• id — the event type identifier,

• message — a human-readable message,

• severity — the event severity level.

By manipulating the context, rules can check for and adjust the event's properties and prepare it for sending.

For example, you can have a rule with an empty condition and an action altering the 'message' variable like this:

message="Server room power: "..message

All the following rules will include the "Server room power:" prefix in the generated notifications.

Some properties, e.g. message_short or message_long, are supported by notification targets but aren't
generated by any events; it's up to the action code to set them if necessary.

It's important to note that rules are processed linearly: adjustment of properties doesn't cause preceding rules to
be re-examined.

Additionally, different event types have more specific properties. All event properties can be checked for or adjusted.

The following convenience severity level constants are defined:

• EMERG, EMERGENCY — "emergency" severity level,

• ALERT — "alert" severity level,

• CRIT, CRITICAL — "critical" severity level,

• ERR, ERROR — "error" severity level,

• WARNING, WARN — "warning" severity level,

• NOTICE — "notice" severity level,

• INFO, INFORMATION, INFORMATIONAL — "informational" severity level,

• DEBUG — "debug" severity level.

Their numeric values are defined so that a higher severity is larger, so condition like severity>=CRITICAL
behaves like what you'd expect.

The core Lua functions are accessible from the context as well, should you need them.

DLI ISO32 User’s Guide: 1.7.24.0

http://www.wikipedia.org/wiki/Lua_%28programming_language%29

8 Event notification 41

8.2 Notification targets

The targets are a list of configurations which can deliver preprocessed messages to concrete recipients. Each target
has a name, which needn't be unique. When a rule action calls notify("target_name"), all targets which
have "target_name" specified as name are triggered.

Notification	targets

Name Type Settings Action

1 admin

Recipient	email	address

Sender	email	address

Server

Server	port

Username

Password

Transport	encryption <none>

Change	 Change	and	send	test	notification	 Delete

2

Server	address

Authentication	passphrase

Authentication	protocol

Context	engine	ID

Context	name

Privacy	passphrase

Privacy	protocol

Security	engine	ID

Security	name

Default	trap	OID

Add

Email

SNMP	v3	inform

<none>

<none>

Notification target configuration

Other target properties depend on the kind of the target.

8.2.1 Email notifications

Email notification targets have the following parameters:

• recipient email address (RFC 822);

• sender email address (RFC 822);

• server (hostname or IP address);

• server port (usually 465, 587 or 25 for unencrypted operations);

• username (for authenticating to the server);

• password (for authenticating to the server);

• transport encryption:

– "smtps" for SMTP wrapped completely in TLS;

– "starttls" for SMTP+STARTTLS command;

– "" (the empty string) for no encryption.

DLI ISO32 User’s Guide: 1.7.24.0

42 CONTENTS

Some fields are autofilled for popular email services once you enter the sender's address.

If present, the message_short event property is used for the email subject; otherwise, message is used.

If present, the message_long event property is used for the email body; otherwise, message is used.

If present, the timeout property can be used to specify the time limit, in seconds, for the notification operation to
complete. Consider increasing it, by specifying a higher value in the rule action, if you experience frequent timeouts.

Event properties client_cert and client_key can be used to specify a pair of client certificate/key files if
TLS is used. The ca_root event property, if present, can be used to specify the set of trusted CA root certificates
(it may point to a single file listing all of them, or to a directory containing the certificate files in OpenSSL format,
and defaults to /etc/ssl/certs).

8.2.2 XMPP notifications

XMPP notification targets have the following parameters:

• recipient XMPP ID (RFC822-like);

• sender XMPP ID (RFC822-like);

• password (for authenticating to the server).

If present, the message_short event property is used for the message; otherwise, message is used.

If present, the timeout property can be used to specify the time limit, in seconds, for the notification operation to
complete. Consider increasing it, by specifying a higher value in the rule action, if you experience frequent timeouts.

Event properties client_cert and client_key can be used to specify a pair of client certificate/key files if
TLS is used. The ca_root event property, if present, can be used to specify the set of trusted CA root certificates
(it may point to a single file listing all of them, or to a directory containing the certificate files in OpenSSL format,
and defaults to /etc/ssl/certs).

8.2.3 SNMP notifications

The notification system supports sending:

• SNMPv1 TRAPs;

• SNMPv2c TRAPs and INFORMs;

• SNMPv3 TRAPs and INFORMs.

The difference between a TRAP and an INFORM is that an INFORM requires confirmation of receipt. Thus, the
target test function can tell if the message has been delivered.

DLI ISO32 User’s Guide: 1.7.24.0

8 Event notification 43

8.2.3.1 Trap OIDs

The type of a TRAP or INFORM is indicated by its OID. SNMPv2c and SNMPv3 include the full OID in the message;
SNMPv1 is different.

SNMPv1 traps are identified by the generic trap type (and correspond to the following trap OIDs):

• 0 — cold start (1.3.6.1.6.3.1.1.5.1),

• 1 — warm start (1.3.6.1.6.3.1.1.5.2),

• 2 — link down (1.3.6.1.6.3.1.1.5.3),

• 3 — link up (1.3.6.1.6.3.1.1.5.4),

• 4 — authentication failure (1.3.6.1.6.3.1.1.5.5),

• 5 — EGP neighbor loss (1.3.6.1.6.3.1.1.5.6).

If the generic trap type is 6, the trap is enterprise-specific (and is usually taken to correspond to OIDs using the
template "1.3.6.1.4.1.ENTERPRISE-OID.0.SPECIFIC-TRAP-TYPE").

Unless you send only generic traps or have a OID tree registered to you, you may want to send 'user-configured'
traps which carry no additional semantics other than the variable bindings. The dlinGeneric user-configured
trap type is designed for that. Its OID is 1.3.6.1.4.1.45770.0.1; this can be specified directly for SNMPv2c or SNM←↩

Pv3, or as an enterprise-specific (generic trap type=6) DLI ("enterprise OID"=45770) trap #1 (specific trap type=1).

8.2.3.2 Security settings

SNMPv1 and SNMPv2c use the 'community' security model which essentially identifies users by a shared secret
which is sent over the network in plain text ('public' and 'private' being the most popular 'secrets'). That means
that they are very insecure and shouldn't be deployed over an untrusted network. SNMPv3 has a more reasonable
security model.

8.2.3.3 Variable bindings

All SNMP TRAPs and INFORMs accept the snmp_values event property to send extra values in the message.
The property, if not nil, must be an array of the following shape:

{{oid1,value1,type1},{oid2,value2,type2},...}

The order may be important; you may want to consult the MIB. The following types are supported:

• "integer",

• "unsigned",

• "counter32",

• "string",

• "hex string",

• "decimal string",

• "nullobj",

• "objid" or "oid",

• "timeticks",

• "ipaddress" or "ip",

• "bits".

Type names are case-insensitive. A type may be omitted, in that case it will be inferred (nil values will be encoded
as null objects, strings as octet strings, numbers as integers, "true" values as integer 1, and "false" values as integer
2 as per SMIv2).

DLI ISO32 User’s Guide: 1.7.24.0

44 CONTENTS

8.2.3.4 SNMPv1 settings

SNMPv1 trap targets have the following parameters:

• server address (hostname or IP address of management station),

• community string (the shared secret for authentication to server),

• enterprise OID (number),

• default generic trap type (number 0..6),

• default specific trap type (number 0..2147483647).

SNMP v1 accepts snmp_enterprise_oid, snmp_generic_trap_type and snmp_specific_←↩

trap_type event properties to override the trap OID; they must be integers or string representations thereof.
It also accepts the snmp_values event property as described above.

8.2.3.5 SNMPv2c settings

SNMPv2c TRAP and INFORM targets have the following parameters:

• server address (hostname or IP address of management station),

• community string (the shared secret for authentication to server),

• trap OID (string)

SNMP v2c TRAPs and INFORMs accept an snmp_trap_oid event property to override the trap OID; it must be
a string. They also accept the snmp_values event property as described above.

8.2.3.6 SNMPv3 settings

SNMPv3 TRAP and INFORM targets have the following parameters:

• server address (hostname or IP address of management station),

• security name (username to authenticate as),

• security engine ID (leave empty for default),

• context name (leave empty for default),

• context engine ID (leave empty for default),

• authentication protocol ("MD5" and "SHA" are supported, leave empty "" for no authentication),

• privacy protocol ("DES" and "AES" are supported, leave empty "" for no encryption),

• authentication passphrase (should be at least 8 characters long, or empty if no authentication),

• privacy passphrase (should be at least 8 characters long, or empty if no encryption),

• trap OID (string)

You can either disable authentication and encryption, enable only authentication, or enable both. An encrypted, but
not authenticated configuration is invalid.

SNMP v3 TRAPs and INFORMs accept an snmp_trap_oid event property to override the trap OID; it must be
a string. They also accept the snmp_values event property as described above.

DLI ISO32 User’s Guide: 1.7.24.0

8 Event notification 45

8.2.4 Webhook notifications

Web hooks notifications send preconfigured POST HTTP requests to URLs.

• recipient URL — the URL to send a request to (must be an HTTP or HTTPS URL);

• content type — the type of content representation to use (must be "json" for JSON or "urlencoded" for URL-
encoded).

Recepient URLs must contain regular public IP addresses, or hostnames which resolve to them. In particular, the
following IPv4 ranges are prohibited from use due to possible security implications:

0.0.0.0/8
10.0.0.0/8
100.64.0.0/10
127.0.0.0/8
169.254.0.0/16
172.16.0.0/12
192.0.0.0/24
192.0.2.0/24
198.51.100.0/24
203.0.113.0/24
192.88.99.0/24
192.168.0.0/16
198.18.0.0/15
224.0.0.0/4
240.0.0.0/4
255.255.255.255/32

Additionally, URLs containing non-default privileged (<1024) ports are restricted as well.

The request payload (content) is a key-value map with the following keys:

• type — the id of the event type;

• severity — the severity label for the event (one of the strings "emergency", "alert", "critical", "error",
"warning", "notice", "info" or "debug");

• message — the human-readable message of the event type;

If present, the properties event property is used to populate the payload with additional items; for instance,
an action properties={time=os.time()} will result in a time key being added. Non-string values will be
JSON-encoded (regardless of the content type).

If present, the headers event property is used to add HTTP headers to the request being sent.

If present, the message_short event property is used for the message; otherwise, message is used.

If present, the timeout property can be used to specify the time limit, in seconds, for the notification operation to
complete. Consider increasing it, by specifying a higher value in the rule action, if you experience frequent timeouts.

Event properties client_cert and client_key can be used to specify a pair of client certificate/key files
if HTTPS is used. The ca_root event property, if present, can be used to specify the set of trusted CA root
certificates (it may point to a single file listing all of them, or to a directory containing the certificate files in OpenSSL
format, and defaults to /etc/ssl/certs).

DLI ISO32 User’s Guide: 1.7.24.0

46 CONTENTS

8.3 Notification rules

The rule system is centered around two kinds of entities:

• condition, which determines if a rule is matched, and

• action, which determines what happens if it matches.

Notification	rules

Condition Action Operations

1 outlet==1

message="The	up	escalator	is	down!"
																								severity=CRITICAL

	 	

2 severity>=CRITICAL

notify("admin")

	 	

3 	

Submit

Notification rule configuration

A condition is a Lua expression, while rules are Lua blocks (may contain several statements).

Roughly, the condition/action table is equivalent to:

if condition1 then action1 end
if condition2 then action2 end
if condition3 then action3 end
...

However, an important difference is that if a condition would cause an error, the condition is considered false instead;
the corresponding action not taken, but the rule check goes on.

Additionally, an empty condition is equivalent to true, and the corresponding action is unconditionally taken. To
disable an action without deleting it, you can use an explicitly false condition false or a condition that's not a valid
Lua expression, e.g. -. To keep the condition text, you can wrap it with false and (...).

Rules are applied from the first one to the last one, so order is important. The "Operations" column contains buttons
which make manipulating rule order easier.

Though you can filter events by the type identifier, it's not necessary in many cases. For example, the condition
auth_allowed==false will match only dli.auth.login_denied events, as auth_allowed is set to
false for those events only. This is notably distinct from a not auth_allowed condition, which will match all
sorts of messages which don't have an auth_allowed property.

Tricks which allow running code in the condition (as opposed to the action) are possible but discouraged.

DLI ISO32 User’s Guide: 1.7.24.0

8 Event notification 47

8.4 Notification event types

Miscellaneous servers expose the types of events they can produce; they are presented on the notification configu-
ration page in a compact form. Here's an example:

Authentication	server	events

Severity Message Extra	properties

NOTICE login	allowed	for	auth_login@auth_ip	(auth_method)
id="dli.auth.login_allowed"
auth_allowed=true

NOTICE login	denied	for	auth_login@auth_ip	(auth_method):	auth_reason
id="dli.auth.login_denied"
auth_allowed=false

NOTICE protection	violation	attempt:	auth_reason id="dli.auth.protection_violation"

INFO auth_login@auth_ip	session	closed id="dli.auth.session_closed"

Notification event types

Underlined items (both in the message and in the 'extra properties' column) specify properties which can be checked
for. You can hover them for more detailed descriptions.

DLI ISO32 User’s Guide: 1.7.24.0

48 CONTENTS

9 Customization page

The customization page allows the administrator to configure some user interface aspects of controller behavior.

9.1 Web page layout and branding

Customize	page	header

Company	name:

Product	name:

Product	URL:

Logo	(image	URL):

Logo	width	(default	195):

Logo	height	(default	65):

Submit

Layout and branding settings

The branding block that appears on every web page can be customized:

• Product name: the displayed name of the product;

• Logo: the company logo image URL;

• Product URL: the URL that the image points to.

Custom logo dimensions may be supplied if needed. The logo URL may be absolute or relative (e.g. /my_←↩

company.png), in which case the related file should be placed in the /www/static/ subdirectory of the unit's
filesystem (probably via SSH).

Company name affects the alternative text for the logo image.

9.2 Measurement units

Customize	preferred	measurement	units

Illuminance:

Temperature:

Energy:

Submit

(standard)

degree	Fahrenheit

kilowatt-hour

Units

You can choose which units to display temperature, illuminance and energy values in. This affects both textual and
graphical web UI display. Note that it's a presentation option only; values are internally stored, and transferred via
REST-like API in standard SI units (degrees Kelvin, lux and joules, respectively) regardless of the customization.

DLI ISO32 User’s Guide: 1.7.24.0

10 External APIs 49

10 External APIs

The controller can be accessed programmatically using a number of protocols and APIS, including:

• the REST-like API (over HTTP),

• JSON-RPC (over HTTP),

• SNMP,

• MQTT,

• UPnP

10.1 Common external API settings

External	APIs

Allow	JSON-RPC:

Allow	REST-style	API:

Enable	UPnP	service:

Enable	SNMP	service:

Enable	MQTT	client:

Relax	non-HTML	method	CSRF	checks:

Relax	non-HTML	content	type	CSRF
checks:

Submit

Common external API settings

Each of the external APIs can be enabled separately.

HTTP APIs perform cross-site request forgery checking to make sure they are not called by a misguided browser
without JavaScript, bypassing browser security checks (a custom header needs to be present in the requests).
Browsers can normally issue GET and POST requests with URL-encoded or multipart content types; you can tick
the corresponding "relax ... checks" checkboxes to skip the checks in cases where the method or content type
indicates that the request couldn't have been sent by a browser without JavaScript.

10.2 REST-like API

Name(view	detailed	description)

User-visible	relay	name

string

DLI	Controller PUT

represents	a	value	in	persistent	storage

write is	denied	if not administrative	user

no	synchronization	requirements

Up	to	Relay	object

Allowed	methods: GET PUT PATCH

REST-like API demo

DLI ISO32 User’s Guide: 1.7.24.0

50 CONTENTS

The REST-style API is based on the REST architectural style. It presents the state and configuration as an hierarchy
of resources, and relies on HTTP to perform action signaling and content negotiation. Requests with different HTTP
headers yield different representations of resources (e.g. plain text, HTML, JSON, etc.). A type description system
is used to outline the object model.

Refer to the REST-style API reference for details.

10.3 JSON-RPC

JSON-RPC	test	(requires	JavaScript)

Parameters Request
Reply
headers

Result

URI:
/jsonrpc/

relay

Method: get

"name" Remove

Add	new	parameter: Add

Perform	RPC

POST	/jsonrpc/relay	HTTP/1.1
Content-Type:	application/json-rpc
Accept:	application/json-rpc
X-Requested-With:	XMLHttpRequest
Content-Length:	57

{"jsonrpc":"2.0","id":1,"method":"get","params":
["name"]}

Connection:	
close
Pragma:	no-
cache
Allow:	POST
Expires:	
Mon,	01	Jan	
1990	
00:00:01	
GMT
Cache-
Control:	
No-cache,	
no-store,	
must-
revalidate,	
max-age=0
Transfer-
Encoding:	
chunked
																		

"DLI	
Controller"

JSON-RPC demo

JSON-RPC allows to access an object model similar to the one of the REST-like API, but in a different manner
which may be more suitable for some integration environments. All composite objects are visible using JSON-RPC,
with their field values accessible using "get" (with the field name in the argument) and "set" methods (with the field
name and value as arguments). Additionally, containers support "add", "remove" and "list" methods. The "describe"
method can be used to output a type description for the object (similar to the REST API "description" relative URI).

10.4 UPnP settings

UPnP	outlet	binding	configuration

# Enable Alternate	name Profile Unique	ID

1 Outlet	1 b76cb5710

2 Outlet	2 b76cb5711

3 Outlet	3 b76cb5712

4 Outlet	4 b76cb5713

5 Outlet	5 b76cb5714

6 Outlet	6 b76cb5715

7 Outlet	7 b76cb5716

8 Outlet	8 b76cb5717

Submit

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

belkin_wemo_socket

UPnP settings

DLI ISO32 User’s Guide: 1.7.24.0

10 External APIs 51

The unit's outlets can be exposed via UPnP as devices with different profiles. The currently supported profile is a
Belkin WeMo socket.

10.5 SNMP settings

SNMP (simple network management protocol) exposes the control variables as a set of hierarchical resources
identified by object identifiers (OIDs). An object identifier is roughly a sequence of non-negative integers (called
arcs), separated by dots ('.'). A leading dot may be used to emphasize that it's an absolute OID; however, all of
the OIDs configurable in ISO32 are absolute unless otherwise stated explicitly, and the leading dot is not needed,
therefore, it's not supported.

SNMP	OID	subtrees

ID Description Root	OID Read	security	level Write	security	level

energyObject energyObject	MIB	(RFC	7460,	allows	manipulating	relays	and	power-related	meters)1.3.6.1.2.1.229 Authenticated	and	encrypted Authenticated	and	encrypted

SNMP OID subtree properties

SNMP v3 introduces a user-based security model, where a number of different users can exist whose requests can
be signed, and possibly encrypted, and who can have different access rights to the OID tree.

The specified root OIDs and their children will be exposed over SNMP. All OIDs must be absolute but not preceded
by a dot.

The root OIDs are actually treated as masks, indicating to set of roots to apply the permission to. In addition to the
standard OID syntax, all but the first two arcs of an OID mask may contain:

• an asterisk "∗", which means that any value in this position will match, e.g. "1.2.∗.1" will match both "1.2.1.1"
and "1.2.100.1";

• a dash-delimited range, e.g. "1.2.8.1-3" will match both "1.2.8.1" and "1.2.8.2";

• a comma-separated list of arcs, possibly including ranges, e.g. "1.2.8,9" will match both "1.2.8" and "1.2.9",
and "1.2.1,6-8" will match both "1.2.1" and "1.2.7".

This can be used to implement fine-grained access to states of individual outlets (see below).

SNMP	users

Is	allowed Username Authentication Privacy Access	levels

powerAdmin 	 Leave	unchanged 	 Leave	unchanged
energyObject:

root:

powerReader 	 Leave	unchanged 	 Leave	unchanged
energyObject:

root:

anotherUser 	 Leave	unchanged 	 Leave	unchanged
energyObject:

root:

	 Leave	unchanged 	 Leave	unchanged
energyObject:

root:

Submit

SHA AES
Full

Forbidden

SHA AES
Read-only

Forbidden

SHA AES
Read-only

Read-only

MD5 DES
Forbidden

Forbidden

SNMP user table

DLI ISO32 User’s Guide: 1.7.24.0

52 CONTENTS

The engine ID identifies the device, and plays an important role in SNMPv3, in particular in authentication and
encryption. It will normally be autodetected by management software (SNMP clients), but you may save it for future
reference (the default value is based on the device factory MAC address). You can even change it; however, if you
do, all passwords for SNMPv3 users will be invalidated as they are stored in a localized form to improve security.

SNMP v1 and v2c do not have a notion of 'users'. Instead, a 'community string', acting as a shared secret, is
transferred in requests in plain text. The following table allows to configure how community strings are mapped to
the above users.

SNMP	communtities

Community IP	address Netmask Mapped	username

private 192.168.0.0 255.255.255.0

public 192.168.0.0 255.255.255.0

Submit

powerAdmin

powerReader

powerAdmin

SNMP community-to-user mapping configuration

In this example, requests with the 'private' community string will be serviced as though they were made by the
'powerAdmin' user if they come from the 192.168.0.x subnet, and denied otherwise. Likewise, requests with the
'public' community string coming from the same subnet will be served as the 'powerReader' user.

10.6 SNMP energy object MIB support overview

The Net-SNMP agent included in ISO32 has built-in support for several well-known MIBs, but none of them deal
with power control. The power-control-related ENERGY-OBJECT-MIB is described in RFC 7460, and is supported
in the following manner:

• the root of the OID tree is at 1.3.6.1.2.1.229 as per RFC;

• the objects are outlets, with indices starting at 1 ;

• the current actual power states are indicated in the eoPowerOperState (1.3.6.1.2.1.229.1.2.1.9) table;

• the assigned (expected) power states can be manipulated in the eoPowerAdminState (1.3.6.1.2.1.←↩

229.1.2.1.8) table;

• supported power states are ieee1621Off (257) and ieee1621On (259) only

Additionally, among others, the following potentially useful parts of the above MIB are implemented:

• eoPowerStateTotalTime;

• eoPowerStateEnterCount.

These accumulate outlet state statistics. Note that those don't persist across device reboots.

The following parts of the above MIB are NOT implemented:

• eoEnergyParametersTable;

• eoEnergyTable;

DLI ISO32 User’s Guide: 1.7.24.0

10 External APIs 53

• eoMeterCapabilitiesTable.

The following related MIBs are NOT supported:

• ENTITY-MIB;

• ENERGY-OBJECT-CONTEXT-MIB.

Additionally, modifying the user permissions via SNMP is NOT supported as they are generated from the configu-
ration described above and the process is not easily reversible.

In the default configuration, the security level for accessing the energy object MIB subtree is high. You can set the
access level to 'Minimal' to interact with the device using SNMPv2c and SNMPv1, or use SNMPv3 instead, which is
the recommended and more secure alternative.

10.7 SNMP sample commands

These examples assume you have your ISO32 at 192.168.0.100 with SNMPv3 user powerAdmin configured with
SHA1 for authentication and AES for encryption, with password powerAdminPassword for both authentication
and encryption. Requests with the private community string are assumed to be serviced as though they were
made by the powerAdmin user.

You'll need Net-SNMP to run these samples; analogous commands should be available for other management
software. The matching of requests vs SNMP protocol version is really arbitrary and is only used to demonstrate
different ways of performing requests. Lines are broken using \\ for readability. We use -On to force numeric OID
output, and omit the leading '.' in output OIDs for simplicity.

An SNMPv2 SET to turn outlet #3 on:

$ snmpset -On -v 2c -c private 192.168.0.100 1.3.6.1.2.1.229.1.2.1.8.3 i 259

Output:

1.3.6.1.2.1.229.1.2.1.8.3 = INTEGER: 259

An SNMPv3 GET to get outlet #5 status:

$ snmpget -On -v 3 -u powerAdmin -l authPriv -a SHA -x AES \
-A powerAdminPassword -X powerAdminPassword 192.168.0.100 \
1.3.6.1.2.1.229.1.2.1.9.5

Output:

1.3.6.1.2.1.229.1.2.1.9.5 = INTEGER: 257

257 is ieee1621Off, so now you know the outlet is physically off.

An SNMPv3 SET to turn outlet #5 on:

$ snmpset -On -v 3 -u powerAdmin -l authPriv -a SHA -x AES \
-A powerAdminPassword -X powerAdminPassword 192.168.0.100 \
1.3.6.1.2.1.229.1.2.1.8.5 i 259

DLI ISO32 User’s Guide: 1.7.24.0

54 CONTENTS

Output:

1.3.6.1.2.1.229.1.2.1.8.5 = INTEGER: 259

Using SNMPv1 to enumerate the actual power states table:

$ snmpwalk -On -v 1 \
-c private \
192.168.0.100 \
1.3.6.1.2.1.229.1.2.1.9

Output:

1.3.6.1.2.1.229.1.2.1.9.1 = INTEGER: 257
1.3.6.1.2.1.229.1.2.1.9.2 = INTEGER: 257
1.3.6.1.2.1.229.1.2.1.9.3 = INTEGER: 259
1.3.6.1.2.1.229.1.2.1.9.4 = INTEGER: 257
1.3.6.1.2.1.229.1.2.1.9.5 = INTEGER: 259
1.3.6.1.2.1.229.1.2.1.9.6 = INTEGER: 257
1.3.6.1.2.1.229.1.2.1.9.7 = INTEGER: 257
1.3.6.1.2.1.229.1.2.1.9.8 = INTEGER: 257

You see that outlets 3 and 5 are on, and all others are off ; you can change outlet states as described above.

10.8 MQTT API

MQTT is an event-oriented protocol with a centralized publish/subscribe model, which makes it a bit awkward to use
for controlling devices; however, an implementation is included due to its popularity.

10.8.1 MQTT client settings

MQTT	client	configuration

Broker	address: 192.168.0.5

Broker	port: 1883

Use	SSL:

Username:

Password:

Topic	root: pcr12345

Last	Will	and	Testament	topic:

Last	Will	and	Testament	payload:

Last	Will	and	Testament	QoS:

Submit

At	most	once

General MQTT settings

ISO32 can function as an MQTT client, so you need to have a configured MQTT broker which it could connect to;
then, other MQTT clients connected to the same broker could communicate with it (multi-broker configurations are
also possible but out of scope of this document). SSL and username/password authentication are supported (leave
empty to disable). The default port is 8883 when SSL is enabled, and 1883 otherwise.

Setting and reporting outlet state are performed by means of MQTT messages. MQTT messages carry topic
markers to identify their type. The topics are arranged in a '/'-separated hierarchy.

The 'Topic root' setting allows to prepend a common string to topics related to all outlets, e.g. to group messages
related to the same controller. It is advisable that you set a different topic root for every controller that you connect
to the same MQTT broker; otherwise, you'll get collisions unless you set different topic subtrees for their outlets.

Last Will and Testament functionality is included which allows the broker to notify you if the ISO32 unexpectedly
goes offline. Note that the topic of the message is not prefixed by the topic root.

DLI ISO32 User’s Guide: 1.7.24.0

10 External APIs 55

10.8.2 MQTT outlet bindings

MQTT	client	outlet	binding	configuration

# Topic	subtree Allow	read Allow	write QoS

1 outlets/0

2 outlets/1

3 outlets/2

4 outlets/3

5 outlets/4

6 outlets/5

7 outlets/6

8 outlets/7

Submit

At	least	once

At	least	once

At	least	once

At	least	once

At	least	once

At	least	once

At	least	once

At	least	once

MQTT outlet bindings

Every outlet can be mapped to an MQTT topic subtree, which will be prefixed by the topic root and '/'; the outlet will
report its state with a message with that topic if 'Allow read' is checked and honor requests to change its state if it
receives a message with that topic suffixed by '/set' and 'Allow write' is checked. The quality of service determines
the mode of delivery to request from the broker for messages on reporting outlet state; not all brokers may support
all delivery modes; the default should be sufficient for most purposes.

Note that there is no explicit way to request the states of outlets. MQTT brokers are expected to keep track of the
most recent payload of the topics.

10.8.3 MQTT payload formats

MQTT payload format is not defined by a standard, so we explicitly define it here. Everything that can be controlled
via MQTT in ISO32 is an outlet state, which can be ON or OFF. We encode ON as '1' (the single ASCII character
'1') and OFF as '0'. For compatibility, in addition to decoding '1' as ON and '0' as OFF, we accept '\0' (the ASCII NUL
character) and the strings 'off' and 'false' as OFF, and '\1' (the ASCII SOH character) and the strings 'on' and 'true' as
ON. Additionally, the empty string '' is used to indicate topic erasure (on topic changes or read access revocation).

10.8.4 MQTT sample commands

These examples assume you have an MQTT broker at 192.168.0.5, it doesn't require authentication and you have
the ISO32 set up like shown on screenshots above.

You'll need the mosquitto MQTT client to run these samples; analogous commands should be available for other
clients. mosquitto also has an MQTT broker implementation.

If you run the command:

mosquitto_sub -h 192.168.0.5 -C 1 -t pcr12345/outlets/0

it'll print the current state of the first outlet as known to the broker (as '0' or '1') and exit. The '-C 1' flags disable
waiting for more state changes; if you run the command with them removed:

mosquitto_sub -h 192.168.0.5 -t pcr12345/outlets/0

DLI ISO32 User’s Guide: 1.7.24.0

56 CONTENTS

you'll see the current state, but the program will wait for more state messages and print the states as they arrive; if
you flip the outlet, you'll see output like this:

0
1
0
1

etc.

To change the state of the first outlet, use the mosquitto_pub command, e.g. to switch it on use:

mosquitto_pub -h 192.168.0.5 -t pcr12345/outlets/0/set -m 1

and to switch it off use:

mosquitto_pub -h 192.168.0.5 -t pcr12345/outlets/0/set -m 0

As mentioned above, alternate value forms, e.g.

mosquitto_pub -h 192.168.0.5 -t pcr12345/outlets/0/set -m true
mosquitto_pub -h 192.168.0.5 -t pcr12345/outlets/0/set -m on

will also work as expected.

DLI ISO32 User’s Guide: 1.7.24.0

11 Backing up settings 57

11 Backing up settings

The setting backup/restore system operates on a file level. It allows saving and restoring most configuration items,
including those which have been done manually, e.g. via SSH. Settings can be backed up and restored selectively.

Download	backup

Select	objects	to	back	up:

...

Authentication	configuration	(can	contain	sensitive	data)

AutoPing	configuration

...

HTTP	server	configuration

...

Download

Backup setting selection (sample)

Modified files are highlighted in green. Choose the setting files you want to save (unknown files are shown as "File
"+filename) and click "Download".

You may protect the security-sensitive parts of the configuration from being stored in a backup. Pressing the
hardware reset button will be required to unlock.

DLI ISO32 User’s Guide: 1.7.24.0

58 CONTENTS

12 Firmware upgrade

The controller's firmware can be upgraded to a newer version by first uploading it, and the committing the upgrade.

12.1 Uploading the firmware

Upload	new	firmware

Firmware	file: No	file	selectedChoose	File

UploadOR

Firmware	URL:

Firmware upload page

You can upload a file or specify a URI where it can be downloaded from. Be sure to disable the same subnet
restriction if you intend to download firmware from a server not in your local network.

By default, the unit beeps and blinks during update. You can disable this using the following form.

Configure	update	process

	Beep	during	upgrade

	Blink	during	upgrade

Save

Firmware update configuration page

You may protect the current firmware from modification. Pressing the hardware reset button will be required to
unlock.

12.2 Committing the firmware upgrade

After the firmware has been uploaded, you are presented with a form to perform the upgrade.

Firmware	check	OK
Upgrading	from	1.7.1.0	to	1.7.2.0.

Perform	firmware	update

Update Cancel

Firmware upgrade page

You can double-check the firmware version. If you wish to cancel the upgrade, it's best to explicitly press 'cancel' in
the form so that the uploaded file could be cleaned up.

DLI ISO32 User’s Guide: 1.7.24.0

12 Firmware upgrade 59

When you start an upgrade, a message about this briefly appears on the LCD.

Firmware upgrade start indication

Further activity is indicated by a cycling pattern of signs.

Firmware upgrade progress indication

After an upgrade has been completed, the unit is rebooted. The first boot may take longer than usual due to
configuration updates.

Post-firmware upgrade initialization indication

DLI ISO32 User’s Guide: 1.7.24.0

60 CONTENTS

13 Date/time

The Date / Time page allows the administrator to set the internal clock and time zone. The clock may be set within
the browser or synchronized with an NTP server.

Date	and	Time

Date 6 	/	 15 	/	 2016 	(MM/DD/YYYY)

Time 14 	:	 1 	:	 57 	(HH:MM:SS)

Submit

Sync	with	Computer	Clock

Date/time

The default OpenWrt configuration is to use the NTP servers (0|1|2|3).openwrt.pool.ntp.org. See
Scripting scripting to perform manual synchronization.

The preferred time zone can be customized as well.

Time	Zone

	 SubmitUTC+3

Timezone

The selected timezone is used for header date/time display and formatting time in plots.

Internally, the time zone is stored in a format different from the display (it has a different meaning for + and -). You
should take that into account when interpreting related REST API values and log output.

DLI ISO32 User’s Guide: 1.7.24.0

14 AutoPing 61

14 AutoPing

AutoPing can monitor a network device and perform a task if the device stops responding. It can also monitor a
group of devices, the task will be executed if none of the group members respond. The task is either a list of outlets
to reboot or a script to execute.

14.1 Common configuration

AutoPing	Properties

Enable	AutoPing:

Time	between	pings: 30 seconds.	(2-3600)

Ping	timeout	to	reboot: 150 seconds.	(2-3600)

Ping	responses	to	enable	autoping: 5 pings.	(0-100)

Times	to	attempt	reboot: 5 tries.	(1-255)

Device	reboot	delay: 120 seconds.	(1-43200)

Apply

Common AutoPing settings

Be sure to enable AutoPing operation by ticking the "Enable AutoPing" checkbox. Certain reset procedures may
turn it off automatically.

The following parameters are used for AutoPing operation:

• Time between pings: This is the time between each ping check of an address. 60 seconds should be useful
for most applications.

• Ping timeout to reboot: This sets the maximum time that sequential communication attempts may fail. Any
failure beyond this time limit will cause the task to be executed. For example, when set to 300 seconds
and a time between pings is 30 seconds, if a target system fails to any pings for 330 seconds, the task
will be executed. The ping that occurred after 300 seconds came at 330 seconds and still failed. Since
occasional network overloads and missed packets can occur during normal network operation, be sure to
choose a reasonable time. AutoPing may handle certain failures immediately instead of waiting for the timeout
if configured to (see below).

• Ping responses to enable autoping: To ensure a reliable connection, autoping will only be enabled after this
many successful pings. We do not recommend changing this (10 is default) unless you must configure your
controller before connecting it to the target devices.

• Times to attempt reboot: If you have an unreliable target device, limit the number of times it will be rebooted
by entering that value here. For example, entering 5 will execute the task up to 5 times before giving up.

• Device reboot delay: After rebooting a device with a cold-boot power-off, a waiting period should occur before
the IP address is re-checked by AutoPing. This delay allows the device to reboot. Windows and Linux servers
can force automatic file system checks which may take several minutes to complete. Enter a safe value here,
for example entering 600 would cause the power controller to start checking the server for normal operation
10 minutes after reboot. If a script is to be triggered, any delays contained in the code being executed should
be considered in determining the delay setting here so that the thread completes before the delay elapses.
This timer starts at the execution of the thread started.

DLI ISO32 User’s Guide: 1.7.24.0

62 CONTENTS

• Handle failures immediately instead of waiting for timeout: Enabling this feature may make sense for handling
certain AutoPing target types which may return an explicit error (TCP RST, HTTP 500, etc.) by invoking
the task immediately instead of waiting for the timeout to pass (during which the error condition could have
disappeared and no action would have been taken). Consider the setup and AutoPing action when enabling
this option (e.g. you shouldn't enable it if the AutoPing action is to power cycle a server, you need to shut one
of its services down temporarily for maintenance and it's the only target of the AutoPing entry).

• Activate enabled entries without trial on service restoration: By default enabled entries still need to wait for a
certain number of successful ping responses on initial power-up before AutoPing actions are taken to make
sure the targets have come online as well (in the assumption that they might have suffered a power failure as
well and may need time to recover). This option can be used to disable this additional check.

14.2 Ping target configuration

To actually use AutoPing, add one or more AutoPing targets (IP addresses) to the list. The button is used to
remove a target from the list.

Below is an example autoping configuration with four targets:

AutoPing

IP(s)
Reboot	Outlets

Script Action
Stats

1 2 3 4 5 6 7 8 TX RX HIT

74.125.87.103

1	 1

790 578

267.122.199.250 642 583

0 0

192.168.0.92
2	 2

215 41
5

0 0

192.168.0.93
3	 3

823 822
0

0 0

4 0 0 0

switch_off

[Cycle]

toggle_stuff_and_log

[Cycle]

Individual AutoPing settings

The checkbox to the left of the IP address is used to start/stop target monitoring. Confirm your action with
button. This button is also used to link a list of outlets or a script line to the autoping target.

You can select the outlets to perform trigger action on by ticking their respective checkboxes.

You can select a scripting action to perform when the AutoPing item triggers (by default the selected outlets are
cycled). The action must be a function defined in the scripting server, like

function action_to_perform()
.
.
.

end

or e.g.

DLI ISO32 User’s Guide: 1.7.24.0

14 AutoPing 63

function action_to_perform(selected_outlets)
.
.
.

end

In the second form the argument selected_outlets (any other name will do) will receive a table of the 1-based
indices of outlets selected (e.g. {1,3,6}). The order of outlets in the table is unspecified; use table.sort in
the script function if you rely on a particular order.

The stats column shows some statistics:

• TX — the number of pings sent to the target IP address;

• RX — the number of pongs received back so far;

• HIT — the number of times the trigger action was executed.

On the sample image, three targets are being monitored (74.125.87.103, 67.122.199.250, and 192.168.0.93).
192.168.0.93 seems to be a very reliable/well-connected device: 823 pings were sent to it and 822 pongs received
back. Chances are very good, the 823rd pong will arrive soon. The reboot task (script function toggle_stuff←↩

_and_log) was never executed.

Looks like 192.168.0.92 failed hard. The task (cycle outlets 3,5,6) was executed 5 times in a row but the target did
not respond. Monitoring was automatically disabled.

74.125.87.103 and 67.122.199.250 form a group, the trigger task will be performed if they both lose 5 sequential
packets simultaneously. This has happened 2 times so far. Monitoring a group of several external spatially separated
reliable IP addresses (in this example they belong to Google and Digital Loggers respectively) may become very
useful to detect a stuck ADSL modem or some other no-Internet condition.

14.3 Action on local network failures

AutoPing is designed to control operation of remote hosts. You usually don't want to e.g. cycle power to all servers
if you turn on same subnet restriction. So AutoPing tries not to trigger if there might be a problem local to the unit
itself. For example, if you detach the Ethernet cable from the unit, you'll see messages similar to the following:

kernel: eth0: link down
config.net: Interface "eth0" is down
autoping: ping x.y.z.t: no usable route to host, ..., not considered a failure

and no actions will be performed. A similar situation will occur if you reconfigure the controller to use a new IP
network from which old addresses are unreachable.

Use the link:// scheme to check for local link loss.

DLI ISO32 User’s Guide: 1.7.24.0

64 CONTENTS

14.4 Advanced ping targets

AutoPing targets don't have to be IP addresses. If you enter a hostname, it will be resolved before sending each
request. If the name resolution fails, it is assumed to be a local error and, as described above, no action is taken. If
a name is resolved to multiple IP addresses, a random one is chosen.

AutoPing defaults to checking targets using the ICMP protocol by default. A variety of other ping target kinds can
be used if you specify a URL instead of simply an IP address or hostname. Supported URL schemes include:

• icmp — this is explicit specification of the "regular" ping protocol, e.g. icmp://192.168.0.1 is equiva-
lent to 192.168.0.1 (note that no trailing slash is used);

• link— this allows to check if the physical link is present on the wired (link://eth0) or wireless (link←↩

://wlan0) interface (which is useful as higher-level targets will usually ignore link loss);

• tcp — this causes AutoPing to try to establish a TCP connection to the given port, e.g. tcp←↩

://192.168.0.1:22 can be used to check that there's a service listening on TCP port 22 (usually SSH)
of 192.168.0.1 (note that no trailing slash is used);

• http and https — this causes AutoPing to perform a HTTP/HTTPS GET request for the given URL, e.g.
http://www.digital-loggers.com/index.html can be used to check that the web server is
responding and can serve its main page.

14.5 AutoPing events

The most often encountered AutoPing events are:

• pinging ... (timeout)

• ping ... succeeded (time)

• ping ... failed (time)

The time is request round-trip time, in seconds. Note that it's purely informative and can't be used as a measure of
target response time unless it has order of hundreds of milliseconds and above.

Several failures in a row trigger AutoPing actions which are reported with corresponding events:

• item ... (addresses...) failed [failures/max]

• item ... (addresses...) failed over (max) times in a row, disabling

As described above, local network failures don't count toward failure count, but generate these notifications
instead:

• no usable route to host, possibly due to local network outage, not considered
a failure (when a request isn't being sent)

• ping ... not received (time), possibly due to local network outage,
not considered a failure (when an outage occurred after a request has been sent)

The events associated with item trial before enabling are self-explanatory:

• item ... (addresses...) enable approved

• item ... (addresses...) enable cancelled

• item ... (addresses...) trial restarted due to address list changes

DLI ISO32 User’s Guide: 1.7.24.0

http://www.digital-loggers.com/index.html

15 Energy monitor 65

15 Energy monitor

The energy monitor page displays values of measurements in different forms.

The image format can be configured on the setup page.

Bus Voltage,	V Current,	A Total	energy,	kWh Reset	energy	meter

Bus	A 120.0 0.0 0.0
Reset

Bus	B 120.0 0.0 0.0
Reset

Temperature,	F 69.5 Notifications...

Illuminance,	lx 0.1 Notifications...

Power	voltage,	V 5.3 Notifications...

Battery	voltage,	V 5.7 Notifications...

Relay	voltage,	V 13.9 Notifications...

Currently measured values

The rest of the page is occupied by user-configurable meters and plots. You can use the icon to add a new

meter or plot, or the icon to delete an existing one.

Use the / icon to toggle visibility of a plot or meter. The setting persists (unlike visibility of configuration
blocks).

Plots and meters can be configured in detail by clicking on them.

15.1 Meters

Submit	 SubmitBus	A	voltage

120V

	 Submit	 SubmitBus	A	current

0.0A

	 Add	meter

Meters

Clicking on a meter allows to configure it.

Meter	properties

Title: Temperature

Data	source:

Minimal	value: 244

Width: 128

Height: 64

Pointer	color:

Scale:

Number	of	decimal	places: 0

Save

Temperature

linear

Basic meter configuration

The basic meter properties include:

DLI ISO32 User’s Guide: 1.7.24.0

66 CONTENTS

• the title;

• the width in pixels;

• the height in pixels;

• the main color of the pointer, in hex web notation without '#';

• the minimum (leftmost) value to display;

• the gauge's scale (linear or logarithmic);

• the number of digits to display after decimal point;

• the data source.

A meter should have one or more sectors, which define different ranges of the value to indicate. The end of one
sector's range is the beginning of the next one's range; for the start of the first sector's range, the "minimum value
to display" setting is used.

SubmitSector	1	properties

Name: Cold

Maximum	value: 273

Color: 0000FF

Save

Meter sector configuration

The sector properties include:

• the name of the sector (currently unused);

• the maximum value for the sector (and also the minimum value for the next sector);

• the sector color, in hex web notation without '#'.

DLI ISO32 User’s Guide: 1.7.24.0

15 Energy monitor 67

15.2 Plots

Submit	Temperature

0

10

20

30

40

50

60

70

80

02/24
04:00

02/24
06:00

02/24
08:00

02/24
10:00

02/24
12:00

02/24
14:00

02/24
16:00

02/24
18:00

02/24
20:00

02/24
22:00

02/25
00:00

02/25
02:00

02/25
04:00

02/25
06:00

Temperature

Add	plot

Plots

Clicking on a plot allows to configure it.

Plot	properties

Title: Bus	A	status

Width: 640

Height: 480

Save

Basic plot configuration

The basic meter properties include:

• the title;

• the width in pixels;

• the height in pixels.

DLI ISO32 User’s Guide: 1.7.24.0

68 CONTENTS

The rest of meter configuration is centered around axes and plot lines which are drawn on them.

There are 4 axes: x1 and y1 are the usual ones; x2 is at the top, and y2 is at the right side.

Axis	y1	properties

Minimum	value: 0

Maximum	value:

Soft	minimum	value:

Soft	maximum	value:

Major	tic	interval:

Minor	tics	per	major	tic:

Save

Configuration of an axis

Each axis has the following properties:

• minimum/maximum values: these specify the exact plotting value range;

• soft minimum/maximum values: these specify a range with limits which can be exceeded;

• major tic interval/minor tics per major tic: configure the axis tic behaviour;

The interaction between hard and soft limits is as follows:

• if no limit is specified, the plotting range is determined by the data to be plotted;

• if only a hard limit is specified, it's obeyed;

• if only a soft limit is specified, it's obeyed unless data exceed it, then data are obeyed;

• if both limits are specified, the soft limit (which should be less strict than the hard limit) is obeyed unless data
exceeds it, then data are obeyed unless they exceed the hard limit (which should be stricter than the soft
limit), then the hard limit is obeyed.

Several plot lines can be drawn on the same plot (they don't have to be proper lines but may have various shapes,
see below).

DLI ISO32 User’s Guide: 1.7.24.0

15 Energy monitor 69

SubmitData	line	1	properties

Title: Bus	A	voltage

Data	source:

Color: FF0000

Line	kind:

Line	type:

Line	width: 1

Marker	type:

Marker	size: 0

Base	axes:

Save

Bus	A	voltage

Lines	only

Solid

Plus

X1,	Y1

Configuration of a plot line

Each plot line can be one of the following styles:

• lines only;

• markers only;

• lines and markers;

• small dots;

• step lines;

• boxes;

• spline smoothed lines;

• approximated spline smoothed lines;

• Bezier smoothed lines;

• vertical lines.

Solid/dotted/dashed lines are supported. Data points can be displayed using a variety of markers:

• empty/filled circle;

• empty/filled square;

• empty/filled triangle;

• empty/filled inverse triangle;

• empty/filled rhombus;

• plus;

• dot;

• cross.

Line width and marker size can be configured. Colors have to be specified in hex web notation without '#'.

Each plot line is plotted on a combination of x and y axes. Plot lines which are plotted against the same axis must
have matching measurement units along that axis; e.g. if you want voltage and current on the same plot, they need
to be plotted against different y axes but can share the same x axis (time).

DLI ISO32 User’s Guide: 1.7.24.0

70 CONTENTS

15.3 Alarms

Every measured value can trigger 'alarms' when it is in a certain value interval; those alarms can be made periodic.
Alarms carry a 'level', which is an administratively assigned number; the range of these numbers is entirely up to
the user; it may be used in notification rule conditions (e.g. 'value_alarm_level>2'); it's intended that alarm levels for
different values correspond to the associated severity/risk value so that the notification rules can be made generic
(and independent of concrete values).

Configuration of meter value alarms is done not on the notification page, but on the energy monitor page. You can
configure a meter value's alarms by clicking the icon next to it. This will open the interval alert configuration
page for it.

Every measured value is a just a number, or 'none' for some meters on some devices which are detachable, so it
makes sense to say there's no value.

The real line of the possible values can be partitioned into intervals using threshold points: e.g. voltage can be
below 100V, between 100V and 140V or above 140V, so there are two points, 100V and 140V, splitting the real line
into 3 intervals. The idea is similar to configuring sectors of a meter's visual appearance.

100 140

Naive interval configuration

Each of the intervals can be assigned an alarm level, which can then be analyzed by notification server conditions
(you can also 'none' if you explicitly wish to send no events for that interval).

It is often desirable to keep some level of hysteresis between two adjacent intervals, so that there is some threshold
the value needs to cross before we consider that it has left one interval and entered a different one, to avoid needless
notifications. This is accomplished by further splitting the threshold points into the top and bottom values. If a value
increases and crosses the interval boundary, we only consider that it has switched intervals after it's above the
top value. Likewise, if a value decreases and crosses the interval boundary, we only consider that it has switched
intervals after it's below the bottom value. E.g. you could use 95V and 105V for the bottom and top values of the
100V threshold point in the previous examples for a 10V hysteresis.

95

105 135

145

Interval configuration with hysteresis

Each interval is characterized by its lower threshold point (with its bottom and top values), its alarm level and period.
The exception is the lowest interval which has no threshold point (but still has a level and a period). The "none"
value is considered so distinct from all regular values that no hysteresis is possible, so it is also characterized by a
level and a period only.

The above sample configuration might look like this:

DLI ISO32 User’s Guide: 1.7.24.0

15 Energy monitor 71

Interval	alert	configuration	for	Bus	A	voltage

Data	absence	alarm	level: None

Data	absence	alarm	period: None

Lowest	interval	alarm	level: 1

Lowest	interval	alarm
period:

60

Save

Submit

Interval	1	properties

Submit

Lower	bound	bottom: 95

Lower	bound	top: 105

Alarm	level: None

Alarm	period: None

Save

Submit

Interval	2	properties

Submit

Lower	bound	bottom: 135

Lower	bound	top: 145

Alarm	level: 2

Alarm	period: 20

Save

Submit

Add	interval

Lower	bound	bottom: None

Lower	bound	top: None

Alarm	level: None

Alarm	period: None

Add

Sample interval alert configuration

Here, we trigger a level 1 alarm every minute if the voltage is below 100V and a level 2 alarm every 20 seconds if
the value is above 140V.

DLI ISO32 User’s Guide: 1.7.24.0

72 CONTENTS

16 System log

Most events occurring during controller operation are logged into the system log.

System	Log:
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	started,	version	2.78	cachesize	150
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	DNS	service	limited	to	local	subnets
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	compile	time	options:	IPv6	GNU-getopt	no-DBus	no-i18n	no-IDN	DHCP	no-DHCPv6	no-Lua	TFTP	no-conntrack	no-ipset	no-auth	no-DNSSEC	no-ID	loop-detect	inotify
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq-dhcp[4061]:	DHCP,	IP	range	192.168.254.200	--	192.168.254.248,	lease	time	12h
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	using	local	addresses	only	for	domain	lan
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	reading	/tmp/resolv.conf.auto
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	using	local	addresses	only	for	domain	lan
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	using	nameserver	192.168.0.1#53
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	read	/etc/hosts	-	2	addresses
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq[4061]:	read	/tmp/hosts/dhcp	-	1	addresses
Fri	Jan	1	00:02:31	2018	daemon.info	dnsmasq-dhcp[4061]:	read	/etc/ethers	-	0	addresses
Fri	Jan	1	00:02:32	2018	user.notice	firewall:	Reloading	firewall	due	to	ifup	of	wan	(wlan0)
Fri	Jan	1	00:02:34	2018	user.notice	upnp[4136]:	Starting...
Fri	Jan	1	00:02:39	2018	user.notice	www[4291]:	Starting...
Fri	Jan	1	00:02:46	2018	daemon.info	procd:	-	init	complete	-
																				

System log

Note that the system log buffer has a fixed size, and old entries are removed automatically as new ones appear.
The display is periodically updated.

You can use the logread command to read the same data in an SSH session. logread -f will display new
entries in real time.

DLI ISO32 User’s Guide: 1.7.24.0

17 Locking down the controller 73

17 Locking down the controller

17.1 Intended locking use cases

In some cases it's required to grant administrative access to multiple, possibly not completely trusted, parties. The
settings described below are designed to somewhat limit what an administrator can do to the device.

17.2 Protection bits

The following operations available to the administrator pose an increased risk and can be protected:

• changing administrator credentials;

• changing networking settings;

• changing notification settings;

• backing up private settings (passwords, keys, etc.);

• restoring settings from backup;

• upgrading firmware;

• entering maintenance mode.

17.3 Protection status indication

Overall protection status is indicated in the top right corner of each page:

• — no protection bits active;

• — some protection bits active;

• — all protection bits active.

Clicking on the icon gives more detailed info:

Firmware	protection	is	disabled

Notification	settings	protection	is	disabled

Private	configuration	protection	is	enabled	but	ineffective:
SSH	is	enabled,	which	could	be	used	to	bypass	protection
Firmware	upload	is	allowed,	specially	crafted	firmware	could	be	used	to	bypass	protection

Administrator	credentials	protection	is	disabled

Maintenance	mode	lock	is	enabled	but	ineffective:
SSH	is	enabled,	which	could	be	used	to	bypass	protection
Firmware	upload	is	allowed,	specially	crafted	firmware	could	be	used	to	bypass	protection

Protection	from	restore	from	backup	is	enabled	but	ineffective:
SSH	is	enabled,	which	could	be	used	to	bypass	protection
Firmware	upload	is	allowed,	specially	crafted	firmware	could	be	used	to	bypass	protection

Network	settings	protection	is	disabled

Protection status details

DLI ISO32 User’s Guide: 1.7.24.0

74 CONTENTS

17.4 Unlocking protection

You should use the reset button and select the "Clear lock bits" reset mode to clear protection bits. This, of course,
requires physical access to the unit.

DLI ISO32 User’s Guide: 1.7.24.0

18 Resetting settings to defaults 75

18 Resetting settings to defaults

The device's settings can be reset to defaults by pressing the reset button to the left of the LCD.

You may want to take a backup of your settings first.

The display displays an overview of possible actions with a ticker on the second LCD line. You may interrupt it by
pressing , or .

Use and , or short presses of the reset button, to select a reset mode. A description of the currently selected
mode is displayed on the second LCD line.

The following reset modes are available:

1. Clear lock bits: Clear protection bits only. Other settings are preserved.

2. Reset network and scripting: Clear protection bits, reset network settings and admin login, disable autoping
and scripts. Other settings are preserved.

3. Reset network and scripting + enable WiFi: Clear protection bits, reset network settings and admin login,
disable autoping and scripts, and enable open WiFi access. Other settings are preserved.

4. Complete wipe: Reset all settings to factory defaults and remove any user files. All settings will be lost!

5. Complete wipe + enable WiFi: Reset all settings to factory defaults and remove any user files, then enable
open WiFi access. All settings are lost!

To activate the selected reset mode, press or the reset button and hold it.

If all settings are reset (the two last 'wipe' reset modes), the Subnet Restriction will be enabled to prevent remote
access using the default password. ONLY MACHINES IN THE SAME SUBNET WILL BE ABLE TO CONNECT A←↩

FTER RESETTING TO DEFAULTS. If connectivity is lost, use a local connection such as a laptop with a crossover
cable to restore your original network settings.

DLI ISO32 User’s Guide: 1.7.24.0

76 CONTENTS

19 Specifications

Alert Beeper 73dBa at 12". Programmable.

Applications Commercial, industrial, and residential remote power control and reboot. Indoor
use only.

Circuit Breakers Manual reset, 15A Thermal, UL
Clock / RTC 15 year Li battery

Controls / Display Reset-to-factory-default switch, 2x16 Backlit LCD w/ PowerSave, 5 button keypad

Dimensions Outside 1.6x5.8x13" 12.3" between mtg. holes

Enclosure Aluminum chassis, double grounded. Injection Molded high-temp thermoplastic
base plate. Vented 2 sides. Fanless.

Ethernet Interface 10/100 autosensing, Static IP, TCP port selectable, 8 pin RJ-45 w/ internal FCC
filtering

FCC Testing Part 15 FCC ID 2ACIULPC9

Humidity 8-80% RH Operating. Non-condensing. No liquid exposure is permissible.

Input Power Cord Removable C19 14AWG 6' length standard

Inlet and Outlet Rating UL, CSA 15A, 120VAC only

Input Frequency Power supply - DC-400Hz

Metering Accuracy +/- 2V, +/- .5A when calibrated 50-60Hz only.

Operating Temperature -30◦ to 170◦F, -34◦ to 77◦C

Options - User Right-Angle 19" rack-mount bracket.

Power Supply Rating 90-240V, AC/DC Autosensing

Password Transmission Encrypted, base 64 or HTTPS

Power Dissipation 3.9W Typ Max (all on) <3 W idle

Power Fail Hold-Over 350ms minimum (all relays on)

Power-Up Modes Last used settings, all power on or off, sequential on or run user-script ∼30s after
power-up

Relay Contact Spec 15-25A AC/DC, 1/2HP

Surge Protection 3600W Metal Oxide Varistor

Software Controls Individual outlets on/off , all on/off /cycle. Net settings, Web UI

Size (Single-Pack Carton) 2.4x7.7x15.8"

Weight (bare) Single unit 3.6 lbs excl. cord & packaging.

WiFi Atheros 9331 2.4G 802.11n RP-SMA

FCC Note:

The ISO32 may only be used with

• the manufacturer supplied antenna (Gain: 2.0dBi),or

• a 50 Ohm antenna of equal or lesser gain.

DLI ISO32 User’s Guide: 1.7.24.0

20 Open source code 77

20 Open source code

In compliance with the spirit of the GNU Public License, source code is provided together with the firmware itself
(accessible using one of the user-configurable links). Note that it is placed on the read/write firmware partition, so
certain operations (like full factory reset) may remove it.

Purchasing a TLA and signing an NDA from Atheros are highly recommended before attempting any custom devel-
opment; however, they aren't required to build the firmware (only the bootloader).

DLI cannot provide warranty or technical support for modified units; this includes units with custom firmware.

DLI ISO32 User’s Guide: 1.7.24.0

78 CONTENTS

21 Technical support

Please register. Painless on-line registration gets you:

• free tech support,

• access to firmware updates,

• and information when updates and new features become available.

To save time, please have a look at the product FAQ page solutions. You may FAX questions to (408) 541-8459 or
email: support@digital-loggers.com.

For phone support, call (408) 330-5599 with the following so we can better serve you:

• The firmware version level installed in the power switch. This information can be found on the lower left corner
of the outlet control page.

• A description of the Ethernet devices connected to your unit, for example, a 10/100 PC and crossover cable.

• A description of the WiFi devices connected to your unit, i.e. their manufacturers and model numbers.

DLI ISO32 User’s Guide: 1.7.24.0

mailto:support@digital-loggers.com
tel:+1-408-330-5599

22 Limited five year warranty 79

22 Limited five year warranty

The terms of this warranty may be legally binding. If you do not agree to the terms listed below, return the product
immediately in original unopened condition for a full refund. The purchaser assumes the entire risk as to the results
and performance of the unit.

DLI warrants this power controller to be free from major defects. No agency, country, or local certifications are
included with this unit. It is the responsibility of the user to obtain such certifications if necessary for the customer's
application. Buyer acknowledges and agrees that he is solely responsible for proper use, certification and safety
testing of components supplied by DLI. DLI's entire liability and exclusive remedy as to defective hardware shall
be, at DLI's option, either (a) return of the purchase price or (b) replacement or repair of the hardware that does
not meet DLI's quality control standards and has been returned through proper RMA procedures. DLI's liability for
repair or replacement is to DLI's customer ONLY.

WARRANTY SERVICE DOES NOT COVER DAMAGE TO SCREW TERMINALS FROM EXCESSIVE TORQUE
OR DAMAGE DUE TO EXPOSURE TO WATER OR VIBRATION.

NO SUPPORT IS PROVIDED FOR MODIFIED FIRMWARE. MODIFICATION OF FIRMWARE VOIDS ALL WA←↩

RRANTY.

Warranty service requires an original invoice from DLI and an RMA number provided by technical support. RMA
material must be shipped prepaid to DLI. RMA numbers are valid for 15 days from date of issue. This warranty does
not cover products which are modified (including firmware modifications), subjected to rough handling, or used in
applications for which they were not originally intended. Batteries are not covered under warranty. Physical damage
caused by customer or in transit to DLI is not covered under warranty. Please insure your shipments.

No oral advice or verbal warranties made by DLI's employees, dealers, or distributors shall in any way increase
the scope of this warranty. DLI makes no warranty as to merchantability or fitness for any particular purpose. DLI
assumes no liability for incidental or consequential damages arising from the use or inability to use this product.
This warranty gives you specific legal rights. You may also have other rights that vary from state to state. Since
some states do not allow the exclusion of liability for consequential damages, some of the above limitations may not
apply to you. This product is not qualified or intended for mobile, airborne, medical or aerospace use or FDA Class
III applications.

DLI ISO32 User’s Guide: 1.7.24.0

	1 Overview
	2 Product features
	3 Package contents
	4 Basic setup and use
	5 LCD and keypad
	6 Setup page
	7 Scripting
	8 Event notification
	9 Customization page
	10 External APIs
	11 Backing up settings
	12 Firmware upgrade
	13 Date/time
	14 AutoPing
	15 Energy monitor
	16 System log
	17 Locking down the controller
	18 Resetting settings to defaults
	19 Specifications
	20 Open source code
	21 Technical support
	22 Limited five year warranty

